Computing with Elliptic Surfaces: GP/PARI Demo

Noam Elkies
December 31, 2011

A\ e \\
A\ introducing some of gp’s elliptic-curve functionality \\
\N\---- \\

\\ Ask gp what the function "ellinit" does
7ellinit

\\ the elliptic curve with al=a2=a3=0 and prescribed c4,c6
E1(c4, c6) = ellinit ([0, O, 0, -c4/48, -c6/864])

\\ here’s the syntax for getting the discriminant and j-invariant
E1(C4,C6) .disc

E1(C4,C6).j
\\ Mazur’s celebrated torsion theorem also holds -- and is much easier to prove
\\ -- not just for elliptic surfaces over Q(T) [where it’s also a consequence

\\ by specialization] but even for *nonconstant* elliptic surfaces over R(T)
\\ where R = field of real numbers, because (once the group is not contained
\\ in the 2-torsion) such a surface is tantamount to a map from P"1 to the
\\ modular curve parametrizing elliptic curves with the given torsion subgroup,
\\ and that curve is rational only for the groups in Mazur’s list: cyclic of
\\ order 1,2,...,10 or 12, and 2x2n for n=1,2,3,4. Over C(T) there are three
\\ further possibilities that can’t arise over R, namely 4x4, 3x6, and 5x5.

\\

\\ We next give explicitly for each n=2,3,...,10 the universal
\\ elliptic curve E with an n-torsion point P. We call these
\\ E2, E3, ..., E10. In each case P is at [0,0] (<==> a6=0),

\\ and for n>2 the tangent line at P is horizontal (<==> a4=0).

\\ for n=2,3,4 the digits 1,2,3,4 in al,a2,a3,a4 are weights; thus

\\ for instance E3(al,a3) \isom E3(c*al,c”3*a3). For n>4 the parameters

\\ a,b are homogeneous of the same weight, so we have the universal curve

\\ over the projective (a:b)-line X_1(n). These formulas, or equivalent ones,
\\ are all "well-known" but I don’t know of a standard place that lists

\\ them all.

E2(a2,a4) ellinit ([0, a2, 0, a4, 0])

E3(al,a3) ellinit([al, O, a3, 0, 0])

E4(al,a2) ellinit([al, a2, al*xa2, 0, 0])
E5(a,b) = ellinit([a+b, ax*b, axb~2, 0, 0])
E6(a,b) = ellinit([a-b, -ax(a+b), axbx(a+b), 0, 0])

E7(a,b) = ellinit([a~2+a*b-b~2, a*b~2x(a-b), a~3*b~2*x(a-b), 0, 0])
\\ for E7 see [Tate 1966], with b/a being Tate’s parameter d

E8(a,b) = ellinit([a"2+2*a*xb-b~2, a~2xb*x(a-b), a~3*b*(a"2-b~2), 0, 0])

\\ use "\" at the end of a line to continue a long formula ...
E9(a,b) = ellinit([a"3-a"2%b-b~3, \

a~2xb*x(b-a)*(a~2-axb+b~2), \

a"2*b~4x(a-b) *(a"2-a*xb+b"2), \

0, 01D

\\ or enclose it with {...}

{

E10(a,b) = ellinit([2*a~3-2*a"2*b-2*a*xb~2+b"3,
a”3*b* (b-a) * (2*a-b),
a”~3%b"2x(b-a)*(2*a-b) * (a"2-3*a*xb+b~2) ,

0,01)

}

\\ For E9 and E10 see e.g. Lemmermeyer,
\\ www.fen.bilkent.edu.tr/"franz/ta/tal8.pdf,
\\ Prop.6 and 7 with d=a/b

\\ note that these [al,a2,a3,0,0] are much simpler than the

\\ usual "narrow Weierstrass" form [0,0,0,-c4/48,-c6/864].

\\ For many purposes it is better to work with these extended,

\\ albeit less canonical, formulas; not only are they more appealing,
\\ but they also tend to show more of the relevant structure (we’ll see
\\ some examples soon), and to make some computations easier as well.
\\ For example, here’s a curve with a 10-torsion point whose conductor
\\ is small enough to be in the original (Tingley/"Antwerp") tables

\\ of modular elliptic curves:

el50 = E10(1,4)

\\ for a curve over (, gp knows how to compute the torsion subgroup:
elltors(el150)

\\ the output "[10, [10], [[0, 480]1]1" says the group has size 10,

\\ with a single generator -- this is automatic here, but compare

\\ the outputs of "elltors(ellinit([0,0,0,-1,0]))" and

\\ "elltors(ellinit([0,0,0,4,0]))" -- and one choice of generator is
\\ [0,480] (which is not our P, but has the same x-coordinate, so

\\ must be -P). Note that the coefficients 26, -24, -480 have factors
\\ 2, 4, 8, so we can obtain an equivalent curve by scaling by 2:

e150 = ellchangecurve(el50,[2,0,0,0])

\\ and now the coefficients are [13, -6, -60, O, 0]. Compare this
\\ with the standard model

? ellglobalred

e150_red = ellglobalred(el150)

e150_standard = ellchangecurve(el50, e150_red[2])

\\ at the cost of forcing al, a2, a3 in {0,1,-1} we’ve made the
\\ coefficients a4, a6 much larger (-828 and 9072).

- \\
\\ A bit more about the universal curve E10 over X_1(10) \\
\\-———— \\

\\ for example, to test that P really is a 10-torsion point on E10(a,b):

E = E10(a,b);

\\ ending a line of input with ";" suppresses the output, which for E10(a,b)
\\ covers 30+ lines

P = [0,0]

P_mult = vector(10,n,ellpow(E,P,n))

\\ the last entry is [0], which is gp’s notation for the zero point of

\\ an elliptic curve, and is not the same as P=[0,0].

\\ P_mult is long enough that you might suspect there might be another [0]
\\ hiding in the middle (if P were really a 5-torsion point); so let’s check:

vector(10,n,P_mult[n]==[0])
\\ the output is [0, O, O, O, O, O, O, O, O, 1], as desired; equivalently,

vector(10,n,P_mult[n]==[0]) == vector(10,n,n==10)
\\ outputs 1 (true).

\\ Two warnings:
\\ 1) as in C, be careful about == vs. =

\\ 2) unlike C (and Python and Sage), gp’s vectors and matrices
\\ are indexed starting at 1, not O

\\ Where are the singular fibers of this curve E = E10(a,b)?

\\ We’d like to answer this by telling gp "factor(E.disc)",

\\ but this returns the error message

\\ **x factor: sorry, factor for general polynomials is not yet implemented.
\\ -- and who knows when if ever it will be implemented in gp (Sage has it).
\\ Still, the discriminant is a homogeneous polynomial in (a:b),

\\ so we can dehomogenize by setting (a,b) = (d,1)

\\ [remember that our a/b is Lemmermeyer’s d], and then the discriminant

\\ is a polynomial in one variable, which gp does know how to factor:

E_d = E10(d,1);

E_d_sing = factor(E_d.disc)

\\ we find that the discriminant factors as some constant times
\\ d710 * (d-1)"10 * (2xd-1)"5 * (d"2-3*d+1)"2 * (4*d"2-2%d-1)

\\ but that doesn’t account for the zero of disc(E_d) at infinity,
\\ corresponding to b=0. The multiplicity of this zero can be found
\\ directly as a valuation:

valuation(E.disc,b)

\\ or by subtracting the degree of disc(E_d) from the homogeneous degree
\\ 3%12 = 36 (the factor of 3 is because the coefficients al,a2,a3,a4,a6
\\ are homogeneous of degree 3x1, 3*2, 3*3, 3*4, 3%6 -- equivalently, the
\\ arithmetic genus of our elliptic surface is 3):

3x12 - poldegree(E_d.disc)

\\ either way we find that the discriminant has a fifth-order zero
\\ at d=infinity (i.e. at b=0).

\\ We claim that the reduction at each of those factors b=0, a=0, a=b, etc.
\\ of disc(E) is multiplicative. (This is a general fact about the universal
\\ eliiptic curve over X_1(n) for n>2; there’s no such curve for n=2

\\ due to quadratic twists.) Except in characteristics 2 and 3,

\\ this amounts to checking that c4 and c6 are relatively prime,

\\ because additive fibers are characterized by the simultaneous

\\ vanishing of c4 and c6:

gcd(E_d.c4,E_d.c6)

\\ and indeed it’s 1. What about the fiber at infinity?
[poldegree(E_d.c4) ,poldegree(E_d.c6)]

\\ returns [12, 18] = [4*3, 6*3], so neither c4 nor c6 vanishes there either.
\\ This should remain the case mod p for all p>3 not dividing 10;
\\ we can check this by forming a resultant:

factor(polresultant(E_d.c4,E_d.c6))

\\ which indeed returns 2760 3718 5°3. We conclude that our surface has

\\ multiplicative reduction of type I_10 at a=0 and a=b, of type I_5 at

\\ b=0 and 2%a=b, of type I_2 at each of the two roots of a"2-3*a*b+b”2 = O,
\\ and of type I_1 at each of the two roots of 4*a”2-2xa*b-b~2.

\\ (digression: actually "factor" always returns a matrix with 2 columns,
\\ one for factors and one for exponents; here’s the syntax for

\\ reconstructing the product. First we need to know how many

\\ factors we have:

matsize(E_d_sing)

\\ returns [5,2], indicating 5 rows and 2 columns; in particular,

\\ matsize(E_d_sing)[1] = number of rows = number of factors, so:

D = prod(n=1, matsize(E_d_sing)[1], E_d_sing[n,1] ~ E_d_sing[n,2]);

D / E_d.disc

\\ returns 1, so here the constant factor in the polynomial factorization
\\ is trivial. End of digression.)

Ao \\
A\ The canonical height of multiples of P \\
., \

\\ Since each multiple mP is either the origin or has polynomial

\\ (not merely rational) homogeneous polynomials as its coordinates,

\\ the naive height of mP is always twice the arithmetic genus, which is 6.
\\ But the canonical height should vanish. gp does not (yet?...) have

\\ built-in caonical heights for elliptic surfaces, so we must compute

\\ them ourselves. Fortunately for a semistable eliiptic surface

\\ (i.e. one all of whose singular fibers are multiplicative)

\\ this is straightforward: for a point Q, the correction at a fiber

\\ of type I_n is m*(m-n)/n, where m in [0,n) is the index of

\\ the component where the corresponding section s_Q meets the fiber.

\\ This index is nonzero iff Q reduces to the singular point, and then

\\ can be computed (up to the involution m <--> n-m, which does not change
\\ the local correction m*(m-n)/n) as the smaller of n/2 and the valuation

N\ of y(@) - y(-Q.

\\ Recall we’ve already computed E_d_sing, but for the dehomogenized
\\ model; first we construct the correspoding homogeneous factorization,
\\ remembering to incorporate the factor b "at infinity":

num_factors = matsize(E_d_sing) [1] + 1;
E_sing = matrix(num_factors, 2);

{

for(n=1, num_factors-1,
E_sing[n,1] = b poldegree(E_d_sing[n,1]) * subst(E_d_sing[n,1], d,a/b);
E_sing[n,2] = E_d_sing[n,2]
);

}

E_sing[num_factors,1] = b;

E_sing[num_factors,2] 5;

E_sing

\\ let’s check we got this right:
prod(n=1,num_factors, E_sing[n,1] ~ E_sing[n,2]) / E.disc
\\ indeed it comes to 1

\\ the next program "corr" computes, for a point Q on elliptic surface e

\\ the correction to the canonical height associated to a factor f of disc(e)
\\ occurring to multiplicity n. The variables x, y, y_diff, and m are

\\ internal to the program.

{
corr(e,Q,f,n, x,y,y_diff,m) =
x = Q[1];
y = Ql[2];
if (valuation((e.al*x + e.a3 - 2xy) , f) == 0, return(0));
if (valuation((3*x"2+2%e.a2*x + e.ad - e.alxy) , f) == 0, return(0));

y_diff = y - ellpow(e,Q,-1)[2];

if(y_diff == 0, return(-poldegree(f)*n/4)); \\ because then m = n/2

m = min(n/2, valuation(Q[2] - ellpow(e,Q,-1)[2], £));

return(poldegree(f) * m * (m-n) / n)
}
\\ we need the factor deg(f) because there are really deg(f) Galois-conjugate
\\ factors; that’s analogous to the factor log(p) in the arithmetic setting
\\ that arises for the height correction at a prime p. Using "poldegree"
\\ without specifying the variable can give unpredictable results, but here
\\ it must work since f is irreducible.

\\ So the following vector should be zero:
vector(9,n, 6 + sum(k=1,num_factors,corr(E,P_mult[n],E_sing(k,1],E_sing[k,2])))

\\ and indeed it is. Check that the same is true for each of the cases
\\ E5, E6, E7, E8, E9 where both homogeneous parameters have the same weight.

\--———— \\
\\ The universal curve over X_1(7) in characteristic 3 (and 5) \\
\--———— \\

\\ To get examples of nonzero canonical height we need elliptic surfaces

\\
\\
\\
\\
\\
\\
\\
\\

E

E_
E_
\\
\\

of positive rank. Computing the rank, let alone the Mordell-Weil group,
of an elliptic surface over C is still an intractable problem in general.
Over a finite field there’s still no general algorithm known but we have
some additional tools, as we’ll illustrate with the reduction mod 3 of
the universal ellipic curve over X_1(7). It’s known, but probably

not surprising, that in characteristic zero the universal curve

over X_1(N) has no points outside its tautological torsion group Z/NZ,
but remarkably this can fail in positive characteristic!

N=7 is the first case where this universal curve is not rational

as a surface; instead it is a K3 elliptic surface (arithmetic genus 2).
We describe its singular fibers as we did for X_1(10):
= E7(a,b);
d = E7(4,1);

d_sing = factor(E_d.disc)
This time the factors are d°7 * (d-1)"7 * (d"3+5*xd"2-8*d+1),
and for the factor at infinity:

valuation(E.disc,b)

2%
A\
gc
(p
\\
\\

12 - poldegree(E_d.disc)
giving 7 either way.
d(E_d.c4,E_d.c6) \\ 1
oldegree(E_d.c4) ,poldegree(E_d.c6)] \\ = [8,12] = 2x[4,6]
so again multiplicative reduction everywhere: I_7 at d=0,1,infinity
and I_1 at the conjugate roots of d~3+5*%d"2-8*d+1.

factor(polresultant(E_d.c4,E_d.c6))

\\

\\

nu
E_
{

fo

}

E_
E_
E_

\\
pr
\\
P

P_

= 2724 3712 7, and it turns out that 2 and 3 are OK too.

Check as before that all nonzero multiples of P have canonical height O:
m_factors = matsize(E_d_sing) [1] + 1;
sing = matrix(num_factors, 2);

r(n=1, num_factors-1,
E_sing[n,1] = b poldegree(E_d_sing[n,1]) * subst(E_d_sing[n,1], d,a/b);
E_sing[n,2] = E_d_sing[n,2]

);

sing[num_factors,1] = b;
sing[num_factors,2] = 7;

sing

let’s check we got this right:

od(n=1,num_factors, E_sing[n,1] ~ E_sing[n,2]) / E.disc
It comes to -1, which is still a constant.

= [0,0]

mult = vector(7,n,ellpow(E,P,n))

vector(6,n, 4 + sum(k=1,num_factors,corr(E,P_mult[n],E_singl[k,1],E_sing[k,2])))

\\ The I_7 fibers contribute 3*6=18 to the Picard number,

\\ and together with the contribution of the fiber and zero-section
\\ we get a total of 63 + 2 = 20, so in characteristic zero the

\\ Mordell-Weil rank is zero as expected and we have an "extremal"
\\ elliptic K3 (maximal Picard number, zero rank) of Neron-Severi
\\ discriminant -7°3 / |T|"2 = 7.

\\ This should be reflected in the point-counts modulo a prime p
\\ other than 7. Each of the I_7 fibers contributes 7p (since the
\\ fiber components are rational -- that’s automatic here because
\\ the components are separated by multiples of P); I_1 fibers need
\\ no special treatment because such a fiber’s singular point is already
\\ smooth as a point on the surface in (x,y,d) space; so we just try all
\\ (x,d) values other than d=0,1,infty, remembering to include
\\ the point at infinity. The following works for odd p; we leave
\\ as an exercise (i.e. don’t have the patience for) checking the
\\ special case p=2.
cubic(E,x) = poldisc(y~2 + E.al*x*y + E.a3*y - (x"3 + E.a2*x"2), y);
{
N7(p) = 21*p + sum(n=2,p-1, p+l+sum(x=0,p-1,
kronecker (subst (cubic(E_d,x),d,n),p)
)
)
}

\\ When (p/7) = -1, the count is exactly p™2 + 20 p + 1

\\ (i.e. the trace of Frobenius on H"2 is 20p, same as the trace on NS;
\\ equivalently, the trace on the transcendental part of H"2 is zero),
\\ so the following run always prints [p,0]:

forprime(p=3,113,if (kronecker (p,7)==-1,print ([p,N7(p)-(p~2+20*p+1)]1)))

\\ if (p/7) = +1, the number of points is between p~2 + 18 p + 1 and
\\ p72 + 22 p + 1. The next run shows, for each such prime up to 113,
\\ how the point-count splits the interval of length 4p between

\\ those two bounds:

{
forprime(p=3,113, if(kronecker(p,7) == +1,
n = N7(p);
print([p, n-(p~2+18*p+1), p~2+22*p+1-n])
)
}

\\ What do you observe?

\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\

\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\

\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\

Since the transcendental lattice is only 2-dimensional,
a single point count suffices to determine the L-function.
(In general we’d also have to count over the fields of

P2, p73, ..., p_e elements where e is roughly half the
transcendental dimension.) In particular, when (p/7) = -1,
the L-function has a 21st zero at s=1 over F_p, and a 22nd

over F_{p~"2}. So we expect two independent sectiomns,

one defined over F_p and the other only over F_{p~2}.

More precisely, the BSD / Artin-Tate conjecture, which is

a theorem in this setting of an elliptic K3 surface over F_q(t),
indicates that over F_p(t) the M-W group is generated by [0,0] and

a section P1 of canonical height 2p/7, while over F_{p~2}(t) the
regulator is p~2/7. This, together with the existence of a

Galois involution and the fact that the canonical height of any
section is in (2/7)Z, implies that there’s a section P2 of height 2p
taken to -P2 by the Galois involution, with Q=(P1+P2)/2 and
Q’=(P1-P2)/2 rational of height 4p/7 and switched with each other by
the Galois involution.

In general the canonical height measures not just the complexity of
a section but also the difficulty of finding it, in much the same way
as in the more familiar setting of elliptic curves over Q. We next
find these sections for p=3, the smallest prime "nonresidue" mod 7,
and thus the one for which those canonical heights are smallest.

as it happens, -1 is a nonsquare mod 3 as well, which means that

we can work with F_9 as F_3[I] where I is [sic] gp’s notation for a
square root of -1; in general we could use F_p[w] where w is a
quadratic irrationality (try "7quadgen"). It *is* possible to find
the sections Q and Q’ for larger primes p such that (p/7) = -1

in time polynomial in p, via the connection between our K3 surface
and the square of a CM elliptic curve of discriminant -7; but
that’s a rather more complicated and extensive computation

which is well beyond the scope of the present notes!

For p=3 we have 2p/7 = 6/7. There are three ways for a section of E7
to have this canonical height: it could be integral (i.e. with x,y
homogeneous polynomials of degrees 4,6 in (a:b), or equivalently
polynomials of degrees at most 4,6 in d), and with height corrections
(here and later multiplied by -1 to forestall a deluge of minus signs)
0 + 10/7 + 12/7 or 6/7 + 6/7 + 10/7 adding up to 22/7 = 4 - 6/7

[NB the numerators 0, 6, 10, 12 are 0%7, 1x6, 2*5, 3*4]; or there could be
a pole (i.e. the denominators of x and y are the square and cube of
the same linear polynomial), so the naive height is 6, and at each of
the three I_7 fibers the height correction is the maximal 12/7,

adding to 36/7 = 6 - 6/7.

\\ Now given an elliptic K3 surface E, a point of naive height h=4,6,8,10,...
\\ is specified by (3h/2)-1 = 5,8,11,... parameters: the h+l coefficients

\\ of the numerator of x, and the (h/2)-2 non-leading coefficients of

\\ monic polynomial of whose square and cube are the demoniators of x and y.
\\ For such x to work, a polynomial of degree 3h occurring in the numerator
\\ of (2y + al x + a3)"2 must be a square, which is 3h/2 conditions;

\\ this suggests that the condition that such x exist is a union of

\\ hypersurfaces in the moduli space of K3 surface, which over C is confirmed
\\ by the Torelli theorem for K3’s. But finding such a section when it exists
\\ is still a challenge, and even five variables is a lot if we want to

\\ solve a system of nonlinear equations. When the height is reduced by

\\ a correction m(n-m)/n, it’s also easier to find the point, because

\\ the condition that the section (x,y) go through the m-th or (n-m)th

\\ component of an I_n fiber above d = d_0 anmounts to min(m,n-m)

\\ #*linear* conditions on the coefficients of x, namely a choice of

\\ the first min(m,n-m) coefficients in the Taylor expansion of x about d_O.
\\ (This description is true for a general multiplicative fiber, not just

\\ in the K3 setting). For example, the first of these coefficients must be
\\ the x-coordinate of the singular point of the Weierstrass equation, because
\\ all the non-identity components map to that singularity. The later

\\ coefficients are determined by the condition that (2y + al x + a3)"2

\\ vanish to order at least 2, 4, 6, ..., 2*min(m,n-m) at d=d_O.

\\ We illustrate this for our surface E7. Remember that cubic(x) computes
\\ (2y + al x + a3)"2. Setting d=0:

subst (cubic(E_d,x),d,0)

\\ yields 4#x"3 + x"2, so clearly the singularity is at x=0. To find
\\ the next term, start from cubic7(x1*d), which automatically has

\\ a factor of d°2, and divide by that:

subst (cubic(E_d,x1*d)/d~2,d,0)

\\ to get x172. So, the next condition is that x is O mod d"2. Thus,
\\ the third condition:

subst (cubic(E_d,x2*d"2)/d"4,d,0)

\\ gives %272 so (x,y) is on component 3 or 4 at d=0 iff x = 0(d"3).
\\ [This is basically retracing Tate’s algorithm for our surface;

\\ the simplicity of the answer illustrates our earlier remarks on

\\ extended vs. narrow Weierstrass form.] Likewise at d=1:

subst (cubic(E_d,x),d,1)

10

subst (cubic(E_d,x1*(d-1))/(d-1)"2,d,1)

\\ the first step proceeded as before, but the second gives
\\ x172 + 2%x1 + 1 = (x1+1)°2, so:

subst (cubic(E_d,x2%(d-1)"2 - (d-1)) / (d-1)74, d, 1)

\\ and this gives %272 + 4*x2 + 4 = (x2+2)"2.

\\ For d=infinity, we look at leading coefficients:
pollead(cubic(E_d,x4*d"4),d)

\\ is 4%x4"3 + x472, with a double root at x4=0, so the singularity is

\\ at x4=0; thus projectively x vanishes (as a homogeneous function of

\\ degree 4 in (a:b)) at d=infinity (i.e. at b=0).
pollead(cubic(E_d,x3%d"3),d)

\\ is %372, so the next step is x=0(d"2), with a double zero at b=0; and then
pollead(cubic(E_d,x2+d"2),d)

\\ gives (x2+1)°2, so components 3 and 4 have x = -d"2 + 0(d) at infinity.
\\ Thus: if we want to get height 6/7 with corrections 0/7, 10/7, and 12/7
\\ we can put the 0/7 at infinity (there’s an automorphism that cyclically
\\ permutes the cusps and thus the I_7 fibers), and the 10/7 and 12/7

\\ are at d=0 and d=1 in some order. We put the 12/7 at d=0, because the
\\ other choice gives the 7-torsion point with x = d"2-d"3 that we know

\\ already. So, we want x to be a quartic in d congruent to O mod d~3

\\ and to (d-1) modulo (d-1)"2. This is easy enough to calculate by hand,
\\ but gp’s "chinese" program does it automatically:
lift(chinese(Mod(0,d"3), Mod(-(d-1), (d-1)"2)))

\\ we get -d"4 + d°3, and then

factor(cubic(E_d, -d"4 + 4°3))

\\ reveals a constant multiple of d"6 (d-1)"4 (3*d"2-4); so indeed

\\ this works in characteristic 3, and the constant is -1 so we

\\ we actually get a point over Z/3Z, not just the 9-element field.

\\ Solving for y we find that one solution is -(d-1)"2 d"4:

P1_d = [-d"4+d~3, -(d-1)"2%d~4];

11

\\ or in homogeneous form:

P1 = subst(P1_d,d,a/b);
P1 = Mod(1,3) * [P1[1]*b~4, P1[2]*b~6]

ellisoncurve(E,P1)

\\ The other choices for getting 6/7 come from translates by
\\ multiples of the 7-torsion point [0,0]:

Pl_trans = vector(7,n,elladd(E,P1,ellpow(E,P,n)));

\\ It will be seen that translate by 5P is the one non-integral section
\\ of these 7. Check that all these have the same height 6/7:

H_naive(P) = poldegree(subst(numerator(P[1]),a,d*b),b)
H(P) = H_naive(P) + sum(k=1,num_factors,corr(E,P,E_sing[k,1],E_sing[k,2]))

vector(7,n, H(P1_trans[n]))

\\ [For p=5 we can find the section P1 similarly. Here we can get 10/7 as
\\ 4 - (0 + 6/7 + 12/7), so this time we make x a multiple of d"3 (to get
\\ the 12/7 at d=0) and require that the d"4 coefficient of x vanish
\\ to get the 6/7 correction from the reducible fiber at d=infinity.

yy = cubic(E_d, x1*d"3) / d°6
\\ that’s a quartic in d that we want to make square; what’s the square root?

yy2 = truncate(sqrt(yy+0(d~3)))
yydiff = (yy2°2 - yy) / d4°3
yydiffl = yydiff / content(yydiff)

\\ the "content" was 4*x1°5 / (x1+1)°6, and x1 cannot vanish because then
\\ we’re back to a 7-torsion point. This gives us the linear polynomial

A\ (2%x173+3*x172+3*x1+1) *d - (x174+2%x1°3+2*%x1°2+2*x1+1) in d, and we want
\\ to choose x1 to make that polynomial vanish identically. This is not

\\ possible in characteristic zero, because these coefficients have

\\ no common root; but:

polresultant (polcoeff (yydiffl,1,d), polcoeff(yydiff1,0,d), x1)

\\ returns -5, so modulo 5 (and no other prime) we get the desired section
\\ by making x1 a common root:

12

gcd(Mod(1,5)*polcoeff (yydiffi,1,d), Mod(1,5)*polcoeff(yydiff1,0,d))
\\ gives x1+3 so we must take x1=2. This gives:
P1.5_d = [2*d"3, -d"4-2%d"3];

subst(P1_5_d,d,a/b)
Mod(1,5) * [P1_5[1]*b~4, P1_5[2]*b"6]

o
—

_5
P1_5

\\ but back to p=3.]

\\ There are three routes to 12/7: either naive height 4 and corrections
\\ 0, 6/7, 10/7, or naive height 6 and corrections 6/7, 12/7, 12/7 or
\\ 10/7, 10/7, 10/7. We choose the last of these, which leaves only

\\ two undetermined coefficients in x. Thus x = sextic(d) / (d-d0)"2

\\ for some dO0 other than O, 1, and infinity, with x = 0(d"2) at d4=0,

\\ x = -(d-1) + 0(d-1)"2 at d=1, and x = 0(d"2) at d=infinity.

\\ Thus x = (c*d - (c+(d0-1)"2)) * (d-1) * 4°2 / (d-d0)"2)

\\ for some c and d0, and after eliminating square factors

\\ we find a sextic in d that must be a square:

{

yy = subst(cubic(E_4,X), X, (cxd - (c+(d0-1)"2)) * (d-1) * d"2 / (d-d0)"2)
* (d-d0)76 / (d74 * (d-1)74);

b

\\ I’m not sure why this circumlocution is necessary instead of just

\\ yy = cubic(E_d, (c*d - (c+(d0-1)"2)) * (d-1) * 4°2 / (d-d0)"2) etc.

yy2 = truncate(sqrt(yy+0(d~4)));

yydiff = (yy2°2 - yy) / d°4;

yydiffl = yydiff / content(yydiff);

\\ there’s still a common factor that "content" doesn’t pick up but
\\ "gcd" does:
yydiffl /= (c + (d0-1)"2) * dO

\\ We now have three simultaneous nonlinear equations (the vanishing of
\\ the coefficients of 1, d, and d"2 in yydiff) to solve for the

\\ two variables c, d0. We solve the first two of these, using

\\ a resultant to eliminate c, then check whether each of the solutions
\\ is feasible for the third equation:

R = polresultant(polcoeff(yydiffi,1,d), polcoeff(yydiff1,0,d), c)
centerlift(factormod(R,3))

\\ we find that there are spurious roots d0=0 and d0=1 of multiplicity

\\ 32 and 2 (they must be spurious beause x must have zeros there,

\\ not poles); a double root at dO = -1; and two further irreducible

\\ sextic factors d0"6-d0~5-d0~4+d0"2+d0+1, d0~6-d0"5-d0~4-d0~3+d0~2+d0-1

13

\\ that cannot be right because we know our solution will be defined
\\ over the 9-element field. So we set d0=1 and solve for c:

yydiffl = subst(yydiffl, d0, Mod(-1,3));

yydiffl /= content(yydiffl)

\\ for some reason gp recognizes the common denominator of c+1

\\ but not the common factor of the numerator; so we ask for it directly:

gcd(ged (polcoeff (yydiff1,0,d) ,polcoeff (yydiffl,1,d)) ,polcoeff (yydiffl,2,d))

\\ and we find a common factor -c~2-c+1, i.e. c=1+I or c=1-I.

Q1 = Mod(1,3) * [I*a~2%b~2 + (-1+I)*a*b~3, -a~2*b~4]

Q2 = conj(Q1)

\\ The same technique works for p=5 to find the section of height 2p/7
A\ - \\
A\ An example of rank 4 with a 4-torsion point over Q \\
A\ \\

14

Kiran Kedlaya's worksheet -- Introduction to
Python and Sage

AMS Short Course: Computing with Elliptic Curves using Sage
January 2-3, 2012
Lecture 1: Introduction to Python and Sage

Kiran S. Kedlaya (MIT/UC San Diego)

This lecture is an introduction to using the computer algebra system Sage. In the process, we will also
introduce the Python programming language, on which Sage is built; however, we'll keep the
programming discussion to a minimum because it is easy to find Python tutorials and other documentation

online. (For example, try the Beginner's Guide to Python.)

All of the lectures in this minicourse are meant to be interactive, so you are strongly encouraged to follow
along on your own computer as we go along. To make this possible, we begin by explaining how to run
Sage on your own computer. There are two natural ways to do this.

e Since Sage is free for everyone, you may install Sage on your own computer and run it locally using
the command line. Go to http://www.sagemath.org and follow the links to download and install
Sage. (Warning: this is a bit tricky if you run Windows. Ask one of us for help if you get stuck.)

e Besides the command line, Sage also offers a graphical interface, the Sage Notebook, in which you
use your web browser as a client to access a Sage server on some possibly different machine. For
example, right now, I am running Sage on my local computer as a server, and using this browser to
connect to that server in order to display this presentation. However, there also exists a public
notebook server on which anyone can create an account and run Sage! This is by far the easiest way
to try out Sage right now. To do so, point your browser to http://www.sagenb.org.

To simplify the exposition, I'm mostly going to stick to explaining the notebook interface. We will come
back to the command line later.

Getting started with the notebook

If you have successfully started a notebook session, you should see something that looks much like this
window, except that instead of all of this text, you should just see an empty box like the one below.

This box is called a cell, and can be used to evaluate any Sage command. For example, try clicking on the
cell, typing 2+2, and clicking "evaluate". (A shortcut for "evaluate" is Shift+Enter.)

2+2
4

Note that the answer appears immediately below, and then a new cell is generated so that you can type
another command. Y ou can also go back and edit the previous cell, but the answer won't change until you
evaluate again. You can even insert new cells between existing cells: if you click on the blue bar that
shows up when you mouse between two existing cells, a new cell will pop up in between.

If you Shift-click instead, you get a text box like this, which supports some formatting and even basic TeX
commands. This is one way to add annotations to a notebook; a more direct one is simply to insert
comments in cells themselves. The # character denotes a comment, and forces everything to the end of the
line to be ignored.

2+2 # should equal 4
4

Besides individual calculator-style expressions, a cell can contain a sequence of instructions; hit Enter to
separate instructions. (This is why Shift-Enter is the shortcut for evaluation, not Enter.) The last expression
is evaluated and printed; you can also add "print" commands to force additional printing.

X =5
y =7
print x+y
X*y

12

35

Each cell evaluation remembers any definitions from cells that were evaluated previously, including
variables and functions (more on which later).

X+y
12

Warning: Sage will let you evaluate cells out of order. It is the order of evaluation that counts, not the order
of appearance in the worksheet.

If you try to evaluate a cell which contains a mistake, such as trying to use a variable which is not yet
defined, Sage will give you a (hopefully) useful error message. You can click on the output to see a more

verbose error message, which may help you isolate the problem if it occurs in a large cell.

z
Traceback (click to the left of this block for traceback)

NameError: name 'z' is not defined

Basic Python/Sage objects

Let's get familiar with some basic types of Python/Sage objects. These will all be things that can be
assigned to variables, which we have already seen how to do in the case of integers.

X = 2+2
print x

4

Note that variables do not need to be declared before being used; in particular, there is no need to specify
in advance what type of object is going to be assigned to a given variable.

So far our variable names have only been one character long. However, this is not required: you may use
any sequence of letters, numbers, and the underscore _ as a variable name as long as it starts with a letter
and does not coincide with a Python reserved wood (such as "print"). Considered choice of variable names
may make your code easier for a human to understand.

square_root_of_2 = sqrt(2)
print square_root_of_2/4

4

Besides integers, some other basic types of objects include rational numbers, real numbers, and complex
numbers (where capital I denotes the chosen square root of -1). These support the usual arithmetic
operations.

print 7 % 3 ## modular reduction

print 7 // 3 ## integer division

print 10/6 ## returns a rational number
print exp(2.7)

print (2+I)*(3+I)

Another basic object type is strings, which are enclosed in either single or double quotes (there is a subtle
distinction which is not relevant here). One common operation on strings is concatenation.

|3l + l4|

Arrays

Besides simple types like numbers and strings, one also has compound types like arrays. Arrays can be
specified using square brackets (the entries need not be all of one type).

print [3, 4] + [5, 'six'] ## plus sign denotes composition

One also uses square brackets to access the individual entries of an array, or even to assign them. Two
important things to note:

e Python indexes starting from 0, not 1.
e You may also use negative indices: -n denotes the n-th term from the end.

u=1[2, 3, 4]
print u[0] ## first element
print u[-1] ## last element
u[1] = 1 ## modify an existing entry
print u[-2] ## should equal u[1]
u[3] = 5 ## this won't work

[2, 3]

[0, 1, 2, 3, 4]

[3, 5, 7, 9, 11]

Some other ways to construct arrays are the following.

e One can concatenate existing arrays using the + operator (see above).

e One can modify in place entries of an existing array (see above).

e One can form slices of an existing array by picking out a range of values. This is the safest way to
make a copy of an array (see below).

e Some functions return arrays, such as the "range" function.

e One can use list comprehensions to apply a function to each term of one array to make a new array.
There is also the option to put in a conditional statement to pick out only some of the terms of the
original array (using == for equality, rather than = which means assignment). This is a lot like how
mathematicians make sets!

u=1_2,3,4,5]

print u[1:3] ## left index is included, right index 1s not
print u[:4] ## left index defaults to 0O

print u[l:] ## right index defaults to the length of the array
print range(5) ## range(n) includes 0, excludes n

print range(3,13) ## specify left and right endpoints as for
slices

print [xA2 for x in u if x%2==1]

| |

w

N
oanN o1 hs
N 0N L~

[3, 4, 6, 7, 8, 9, 10, 11, 12]

[9, 25]
Warning: arrays are copied by reference, not by value. This is in fact true for all Python/Sage objects, but
the fact that arrays can be modified after they are created (that is, they are mutable) creates a real danger.

a=[1,2,3]

b = a ## does not create a new array!
b[1] = -1

print "a = ", a ## has now been modified
c = a[:] ## this does create a new array
c[-1] = 4

print "a =", a

print "c = ", c

Conditional evaluation

Like most programming languages, Python supports conditional evaluation via such mechanisms as for
loops, while loops, and if-then-else constructions. Here is an example.

for 1 in range(5):
if i%2 ==
print i, "is an even",
else:
print i, "is an odd",
print "number"
print "loop complete"

Let's step through this example in detail.

e The first line creates the for loop. The range is created using the "range" function described above.

e Everything within the for loop is indented. This is not optional! Python uses this indentation to figure
out where the loop starts and ends. The notebook will help you: after you type the "for" line (ending
with the colon), the next line will be indented appropriately.

e The "if" command takes a Boolean expression. As we saw before, == denotes equality, as opposed
to a single = which denotes an assignment.

e The "else" command is optional. Again, the indentation tells Python where the if and else clauses
begin and end.

e The "print" command can take multiple arguments, and adds a line break unless you end it with a

comimad.

Here is another example, this time of a while loop. Note the effect of the "continue" and "break"
statements.

t =4
while t < 10:
t += 1 ## has the same effect as t =t + 1

if t%2 == 0:
continue ## jump to the next iteration of the loop
print t
if t > 8:
break ## jump out of the loop
)
7
9
Functions

By now, you have probably noticed that much Python functionality is provided via callable functions, such
as "range". Sage extends this functionality by specifying many new advanced mathematical functions.

prime_pi(1000) ## The number of primes up to 1000
168
Sage includes a couple of handy techniques for inquiring about functions. One of these is tab completion:
if you type part of the name of a function and hit Tab, Sage will attempt to complete the name of the

function. On one hand, this can save a lot of typing.

charac

Perhaps more usefully, if more than one completion is possible, Sage will show you all possible
completions; this can be a useful way to find out about what is available in Sage. (This technique is even
more possible when applied to object methods; see below.)

ran

Another important inquiry technique is introspection: if one evaluates the name of a function followed by a
?, Python will show you a bit of documentation about that function. For instance, if you have forgotten
how to specify a range other than 0, ..., n-1, we can use introspection on the range function.

range?

Python and Sage also allow for user-defined functions. As with variables, these may be defined in one cell
and then used in later cell evaluations. (These will not admit introspection unless you do some extra work,
but they will admit tab completion.)

def strange_sum(a, b):
c = atb
return(a+b+c)

strange_sum(2, 3)
10

strange_sum

File: /tmp/tmpDTc7pM/__code___ .py
Type: <type 'function'>
Definition: strange_sum(a, b)

Docstring:

X.__init_ (...) initializes x; see x.__class__ . __doc__ for signature

Mathematical objects in Sage

One important difference between Python and some lower-level programming languages like C is that
Python is object-oriented. That is, besides the variables and functions that one can define globally, one can
also create objects with their own variables and functions attached to them. In Sage, this framework is used
to implement the construction of mathematical objects in a rigorous fashion which corresponds pretty well
to the way mathematicians are used to thinking about these objects. For example, one can create such
objects as the ring of integers and the field of rational numbers.

z
Q

IntegerRing()
RationalField()

One can then feed these into more complicated constructions, like the ring of polynomials in a single
variable.

R.<T> = PolynomialRing(Q)

In this example, we have created a polynomial ring over the rationals with a distinguished generator, to
which we have assigned the name T. We can now generate elements of the ring R simply by writing down
expressions in T.

poly = TA3 + 1

print poly.parent()

print poly.parent() ==
Univariate Polynomial Ring in T over Rational Field
True

The "parent" command here is an example of a method of the object poly.

Now that we can make polynomials over the rationals, what can we do with them? An excellent way to
find out is to use tab completion: if one types "poly." and then hits Tab, one is presented a list of all of the
methods associated to poly.

poly.factor() ## can also be invoked as factor(poly)
(T + 1) * (TrA2 - T + 1)

In the previous example, the "factor" method did not require any additional arguments. In other examples,
one or more arguments may be required.

poly.xgcd(T-2) ## extended GCD; can also be invoked as
xgcd(poly, T-2)

(1, 1/9, -1/9*TA2 - 2/9*T - 4/9)

This syntax might seem a bit strange: the extended GCD operation is essentially symmetric in its variables,
so calling it in an asymmetric fashion may be counterintuitive. There is an extremely good reason for using
the object-oriented syntax, namely tab completion. One can for instance type "poly." and his Tab to see the
list of all of the methods associated to poly!

The ease of looking up the operations available on a given type of mathematical object is one of my
favorite features of Sage. Even Magma, which has both object orientation and tab completion, fails on this
point because functions are not viewed as object methods, but intsead all inhabit a single namespace.

poly.

As for bare functions, one can also type a few characters and get only the methods that start with the
characters you type. For example, if you can't remember whether the method for factoring a polynomial is
called "factor", "factorize", "factorise", "factorization", or "factorisation", you can check by doing a tab
completion:

poly.factor

There can sometimes be some ambiguity about what the correct parent of a mathematical object should be.
For instance, 3/4 is a rational number, but it can also be viewed as a polynomial over the rationals, e.g.,
when one wants to add or multiply it with another such polynomial. For the most part, Sage will take care
of this for you automatically.

poly2 = poly + 3/4
print poly2.parent()

Univariate Polynomial Ring in T over Rational Field

Sometimes, however, one needs to make this change of parent explicit, e.g., in case one wants to call a
method which exists for polynomials but not for rationals. For example, this fails:

poly2 = 3/4
poly2.coefficients()

Traceback (click to the left of this block for traceback)

AttributeError: 'sage.rings.rational.Rational' object has no
attribute 'coefficients'

This change of parent (called coercion) is usually accomplished by the following syntax, which looks like
plugging the element into the new parent viewed as a function.

poly2 = R(3/4)
poly2.coefficients()

[3/4]

Plotting

Sage has many more mathematical features than we can introduce here (but which are well-documented).
One feature which will be used later is plotting of various kinds. (We only need 2D plotting her; there are
also extremely cool 3D plotting capabilities, but you can discover those on your own.)

plot(sin, 0, pil) ## Plotting a built-in function

var('x') ## Define a symbolic variable named x
plot(x, (x, 0, 1)) ## Plot a function specified in terms of a
symbolic variable

1}l
0.8

0.6

0.2 0.4 0.6 0.8 1

def f(x):
return(xn2+1)

plot(f, -1, 1) ## Plot a user-defined function

plot(lambda x: xA2+1, -1, 1) ## Same thing using an inline
function

-1 0.5 0 0.5 1

plot([sin(x), cos(x)], (x, 0, pi/2)) ## Plot multiple functions
on the same axes

0.8 |
0.6
0.4 |

0.2

0.5 1 1.5

scatter_plot([(xA2,xA3) for x in range(-5,5)]) ## plot a
collection of points

O
50 |-
O
i O
QO— o5 10 15 20 25
@]
_SD -
O
100
O
Exception handling

This last point is a bit technical, but it will arise in the later lectures. As we saw earlier, if you make a
mistake, Sage normally interrupts the computation to return an error message explaining what went wrong.

print (3 / (1-1))

Traceback (click to the left of this block for traceback)

ZeroDivisionError: Rational division by zero

One can explicitly create these errors as a debugging tool.

def f(n):
if n < 0:
raise ValueError, "Argument of f must be nonnegative"

return(sqrt(n))

print (1)
print f(-1)

1
Traceback (click to the left of this block for traceback)

ValueError: Argument of f must be nonnegative

One can also catch these errors to a limited extent, using the try and except commands.

def f(x,y):
try:
n = 1/x
print "inversion complete"
return(n + y[0])
except ZeroDivisionError:
return 0

print f(1, [2,3]) ## normal evaluation

print (0, [4,5]) ## exception encountered, skipping the
internal print statement

print f(2, []) ## this exception is not caught, so causes an

error
print f(3, [3, 4]) ## we never get this far

inversion complete

3

0

inversion complete

Traceback (click to the left of this block for traceback)

IndexError: list index out of range

Conclusion: what else can Sage do?

To conclude, we point out a few more advanced things that can be accomplished using Sage, just to give

the flavor of what the possibilities are. These are mostly complementary to the advanced functionality for
elliptic curves that will be highlighted in the subsequent lectures.

e Communicate with other mathematical software. Sage itself ships with many well-regarded free
software packages, such as Pari (number theory), Gap (group theory), Singular (commutative
algebra), R (statistics), etc. Sage can also communicate with nonfree packages such as Mathematica,
Maple, Matlab, and Magma if you have them installed. This means that you can access the power of
many software packages while (mostly) only having to deal with one well-designed programming
language!

e Communicate with TeX at various levels. For instance, any Sage object has a method that returns its
representation in TeX. An even more spectacular example is SageTeX, a TeX package that allows
your TeX document to pass inputs to Sage and retrieve the answers!

e Annotate notebooks by inserting formatted text and even TeX code between the cells, as in this
presentation.

AMS Short Course -- K. Ribet
AMS Short Course: Computing with Elliptic Curves using Sage
January 2-3, 2012
Lecture 2: Elliptic Curves over Finite Fields

Kenneth A. Ribet, UC Berkeley

Some references: http://www.sagemath.org/doc/reference/sage/schemes/elliptic_curves/ell_finite_field.html and
http://www .sagemath.org/doc/reference/sage/schemes/elliptic_curves/formal_group.html

This lecture is about elliptic curves over finite fields, so we should pick one. We'll start with p = 23 and
consider the fields with p elements and with p2 elements:

p=23; k=GF(p); K.<a> = GF(pN2)

p;, k ; K

23

Finite Field of size 23

Finite Field in a of size 2372
a.minimal_polynomial()

XN2 + 21*X + 5

There are at least three different ways to define an elliptic curve over k or K : (1) we can specify the two coefficients of a short-

form Weierstrass equation; (2) we can specify the five coefficients of a long-form Weierstrass equation; (3) we can specify a j-
invariant and let sage pick a curve with that 7-invariant.

E1l = EllipticCurve(k, [1,2]); E2 = EllipticCurve(k,[1,2,3,4,5]); E3 =
EllipticCurve(j=k(2904)) ; E1; E2; E3
Elliptic Curve defined by yn2 = XxA3 + X + 2 over Finite Field of
size 23
Elliptic Curve defined by ynA2 + Xx*y + 3*y = XA3 + 2*XA2 + 4*x + 5
over Finite Field of size 23

Elliptic Curve defined by ynA2 = xA3 + 15*x + 7 over Finite Field of
size 23

Sage will "graph" elliptic curves over finite fields, but the resulting image may not add much to your day.

EllipticCurve(GF(503),[4,4]).plot()

500% &) . . » . . . ®
- . "’ o: .3 % ‘ . “ee
.
. . e *s . " . .
o . % - . . .
. u® . . * ., R »~ . ®
L] '. Ve .‘ . - :. . ™ : . .
400 |* . s Wt e TN St e
“e “' . . * - . * .
*
* . - * .‘.. . : [] - " .' - * ™ .i L *
* .s .- s . ‘e *
«* * L ™ * ° ¢ . ' &
o ., . . . = e . .
300 |- P : . . %
L [T Y - -
.
I * . * es * ..:' *
. o *
- - - e - »
. . .
m .® . e 2 . e
200 | * e e . . T e . e
* . * - . @
., . @ %
. taw . s . L - *
’ e . .:q -5 " * .« °° - : .: e
> .I “' [] L] . .. - - *
100 (e : " o .. '-,. ." -It - R . - '.- . : " L
- o * . " _. . " - . % *e

Even when working over finite fields, our mental image of an elliptic curve will tend to be like the picture below:

E=EllipticCurve('389a');

G=plot(E, dpi=70);

G += sum([plot(p,pointsize=100*p.height()) for p in E.gens()]);
show(G)

This is the curve that I am wearing.

I will return to £'1, E2 and E 3 in a couple of minutes, but first I want to look at a fourth curve, which I'll call E, and find a
single non-zero point on this curve "by hand."

E=EllipticCurve(GF(144169),[-1,3]); E

Elliptic Curve defined by yAr2 =

= XA3 + 144168*x + 3 over Finite Field
of size 144169

I am fond of the prime number 144169 for two reasons. First, it's the discriminant of the Hecke algebra associated to the space of
cusp forms of weight 24 on SL(2, Z). Second, it's the concatenation of 122 and 132
E.abelian_group()

Additive abelian group isomorphic to Z/143944 embedded in Abelian

group of points on Elliptic Curve defined by ynA2 = xA3 + 144168*x +
3 over Finite Field of size 144169

The group of rational points on this curve is cyclic of order 23 - 19 - 947.

Mod (173 + 144168*1 + 3, 144169);
3
1

kronecker (173 + 144168*1 + 3, 144169)

If = 1, the RHS of the definining equation for E is 3, which is a square mod 144169. Can we find a square root of 3 mod
144169? Cipolla's algorithm, which I will explain at the end of the talk, outputs 79896 as a square root of 3.

P=E([1,79896]); P; P.order ()

(1 : 79896 : 1)
143944

We were able to find a generator for the group of rational points of & simply by messing around. The a priori probability for
success was a bit larger than 0.47:

euler_phi(143944)/143944.
0.473184016006225

End of interlude. Now let's go back to the three original curves and compute some of their invariants.

El.j_invariant(); E2.j_invariant();
19
22
6

E3.j_invariant()

Note that 19 = —4 happens to be the unique supersingular j-invariant in characteristic 23, other than j = 0 and j = 1728,

which are supersingular because 23 is —1 mod 3 and mod 4, respectively. It's serendipitous that we stumbled on the j-invariant
19 by entering 1 and 2 as the coefiicients of our short Weierstrass equation.

El.is_supersingular(); E2.is_supersingular(); E3.is_supersingular()
True

False
False

El.hasse_invariant(); E2.hasse_invariant(); E3.hasse_invariant()
0
17
8

El.cardinality(); E2.cardinality(); E3.cardinality()
24
30
16

El.trace_of_frobenius(); E2.trace_of_frobenius(); E3.trace_of_frobenius()
0
-6
8

If is the trace of Frobenius of a curve E, the number of points of F over k is 1 4+ p — ¢t. Once we know ¢, we can compute
the number of points of E over any finite extension of K. In particular, the number of points of E over K is (1 + p)? — t2 = (

(1+p-El.trace_of_frobenius())*(1+p+El.trace_of_frobenius()); (1+p-
E2.trace_of_frobenius())*(1+p+E2.trace_of_frobenius()); (1+p-
E3.trace_of_frobenius())*(1+p+E3.trace_of_frobenius())

576
540
512

We can check this in all three cases, but let's just choose one case---say the middle one.

E2.cardinality(extension_degree=2)
540

Sage takes great pleasure in computing the abelian group structure of groups of points on an elliptic curve over a finite field.

El.abelian_group(); E2.abelian_group(); E3.abelian_group()

Additive abelian group isomorphic to Z/2 + Z/12 embedded in Abelian
group of points on Elliptic Curve defined by yA2 = xA3 + x + 2 over
Finite Field of size 23

Additive abelian group isomorphic to Z/30 embedded in Abelian group
of points on Elliptic Curve defined by yA2 + Xx*y + 3*y = XA3 + 2*xA2
+ 4*x + 5 over Finite Field of size 23

Additive abelian group isomorphic to Z/2 + Z/8 embedded in Abelian
group of points on Elliptic Curve defined by yA2 = xA3 + 15*x + 7
over Finite Field of size 23

What happens over K?

El.change_ring(K).abelian_group(); E2.change_ring(K).abelian_group();
E3.change_ring(K).abelian_group()

Additive abelian group isomorphic to Z/24 + Z/24 embedded in Abelian
group of points on Elliptic Curve defined by yn2 = xA3 + X + 2 over

Finite Field in a of size 2372

Additive abelian group isomorphic to Z/6 + Z/90 embedded in Abelian

group of points on Elliptic Curve defined by yA2 + X*y + 3*y = xA3 +
2*xN2 + 4*x + 5 over Finite Field in a of size 2372

Additive abelian group isomorphic to Z/16 + Z/32 embedded in Abelian

group ofr points on Elliptic Curve detined by ynZ2 = Xn3 + 1b™X + [
over Finite Field in a of size 2372

So E 3 has two "independent" points of order 16; we can take the Weil pairing of these two points to get a 16th root of unity in K

P,Q = E3.change_ring(K).gens(); P; Q; P.order(); Q.order()
(9%*a : 6*a + 2 : 1)
(4*a + 19 : 13*a + 6 : 1)
32
16

(2*P) .weil_pairing(Q, 16)
4*a + 17

To check that this element is indeed a 16th root of unity, it suffices to check that its eighth power is —1 = 22.

()8
22

If we exchange P and @, the value of the Weil pairing is inverted:

((2*P).weil_pairing(Q,16))*(Q.weil_pairing(2*P,16))
1

Isogenies
We'll divide 23 by a cyclic subgroup of order 32 defined over K:

E3overK = E3.change_ring(K)

phi = E3overK.isogeny(P); phi
Isogeny of degree 32 from Elliptic Curve defined by yA2 = xA3 + 15*X
+ 7 over Finite Field in a of size 23722 to Elliptic Curve defined by
yN2 = XA3 + (4*a+9)*x + (16*a+7) over Finite Field in a of size 2372
Eprime = phi.codomain(); Eprime

Elliptic Curve defined by yn2 = XA3 + (4*a+9)*x + (16*a+7) over
Finite Field in a of size 2372

Eprime.is_isogenous(E3)
True

Over finite fields, isogenous curves have the same number of elements.

Eprime.cardinality()
512

Automorphisms

A "generic" curve has only {1} as its group of automorphisms. The curves with j = 0 and 7 = 1728 have actions of 3
and 4, respectively.

El.change_ring(K).automorphisms()

[Generic endomorphism of Abelian group of points on Elliptic Curve
defined by ynr2 = xA3 + x + 2 over Finite Field in a of size 2372
via: (u,r,s,t) = (1, 0, 0, 0), Generic endomorphism of Abelian
group of points on Elliptic Curve defined by yA2 = xA3 + X + 2 over
Finite Field in a of size 2372
via: (u,r,s,t) = (22, 0, 0, 0)]

EllipticCurve(j=k(0)).automorphisms()

[Generic endomorphism of Abelian group of points on Elliptic Curve
defined by yAr2 = xA3 + 1 over Finite Field of size 23

via: (u,r,s,t) = (1, 0, 0, 0), Generic endomorphism of Abelian
group of points on Elliptic Curve defined by yA2 = xA3 + 1 over
Finite Field of size 23

vVia: (u,r,s,t) = (22, 0, 0, 0)]

EllipticCurve(j=K(0)).automorphisms()

[Generic endomorphism of Abelian group of points on Elliptic Curve
defined by yA2 = xA3 + 1 over Finite Field in a of size 2372

via: (u,r,s,t) = (1, 0, 0, 0), Generic endomorphism of Abelian
group of points on Elliptic Curve defined by yA2 = xA3 + 1 over
Finite Field in a of size 2372

via: (u,r,s,t) = (22, 0, 0, 0), Generic endomorphism of Abelian
group of points on Elliptic Curve defined by yA2 = xA3 + 1 over
Finite Field in a of size 2372

via: (u,r,s,t) = (4*a + 7, 0, 0, 0), Generic endomorphism of
Abelian group of points on Elliptic Curve defined by yA2 = xA3 + 1
over Finite Field in a of size 2372

via: (u,r,s,t) = (4*a + 8, 0, 0, 0), Generic endomorphism of
Abelian group of points on Elliptic Curve defined by yA2 = xA3 + 1
over Finite Field in a of size 2372

via: (u,r,s,t) = (19*a + 15, 0, 0, 0), Generic endomorphism of
Abelian group of points on Elliptic Curve defined by yA2 = xA3 + 1
over Finite Field in a of size 23A2

via: (u,r,s,t) = (19*a + 16, 0, 0, 0)]

(19*a+16)13
22

EllipticCurve(j=K(1728)).automorphisms()

[Generic endomorphism of Abelian group of points on Elliptic Curve
defined by ynr2 = xA3 + x over Finite Field in a of size 23A2

via: (u,r,s,t) = (1, 0, 0, 0), Generic endomorphism of Abelian
group of points on Elliptic Curve defined by yA2 = xA3 + X over
Finite Field in a of size 2372

via: (u,r,s,t) = (22, 0, 0, 0), Generic endomorphism of Abelian
group of points on Elliptic Curve defined by yA2 = xA3 + X over
Finite Field in a of size 2372

via: (u,r,s,t) = (11*a + 12, 0, 0, 0), Generic endomorphism of
Abelian group of points on Elliptic Curve defined by yA2 = xA3 + X
over Finite Field in a of size 23A2

via: (u,r,s,t) = (12*a + 11, 0, 0, 0)]

(12*a + 11)A2
22

F.= GF(4); len(EllipticCurve(j=F(0)).automorphisms())
24

Embedding degree

At this point, we can fool around a bit with some large primes, just to show that sage does not choke on large numbers. The
example here is from an article by David Freeman, a mathematical cryptographer who is now at Stanford.

0=6462310997348816962203124910505252082673338846966431201635262694402825461643;
factor(q)

In other words, q is a large prime, in fact a 252-bit prime:

len(qg.str(2))

E=EllipticCurve(GF(q), [-
3,4946538166640251374274628820269694144249181776013154863288086212076808528141])

time n=E.order(); n; is_prime(n)

In other words, this curve has a group of rational points that is (cyclic) of prime order; we're calling 7 the order. For Freeman,
the striking fact about this example is that you can get the full group E [n] ~ (Z / nZ)2 to be rational by passing to a relatively
small extension of the base field (the field with g elements):

Mod(q,n).multiplicative_order ()

In other words, if we pass to a degree-10 extension of the base field, we force all the n2-division points on the curve to become
rational.

time E.cardinality(extension_degree=10)/nA2

The fact that the ratio is an integer means that n2 does divide the group of points on E with coordinates in the large field.

The fact that the ratio is an integer means that n2 does divide the group of points on E with coordinates in the large field. As
you are about to see, it is easy to find one point of order n on E. Finding a second independent point is a computational
challenge that I haven't attempted.

time E.gens()

Trying to run the following command will get us into a computation for which I can't estimate the "arrival time." Therefore, we
won't go there!

K.<a>= GF(g”10); E.change_ring(K).gens()

Supersingular j-invariants in characteristic 103

from sage.schemes.elliptic_curves.ell _finite_field import
supersingular_j_polynomial

f=supersingular_j_polynomial(103); type(f)
<type
'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'&\
gt;

supersingular_j_polynomial(103).factor()
(J +34) * (J +69) * (J +79) * (J +80) " (jr2 + 63%] +69) * (2
+ 84*j + 73)

R.<x>=L[]

Univariate Polynomial Ring in x over Finite Field in c of size 10372
F(x)
XA8 + 100*XA7 + 84*xN6 + 83*XA5 + 70*xN4 + 58*xA3 + 24*xN2 + 15*x +
64
factor(_)
(X + 34) * (x +69) * (x +79) * (x +80) * (x + 40*c + 63) * (x +
46*c + 19) * (x + 57*c + 65) * (x + 63*C)
supersingular_j_polynomial(103).degree()
8
floor((103-1)/12)
8

E=EllipticCurve(j=L(-63*Cc))

E.is_supersingular()
True

Formal groups

G1=E1l.formal_group(); G3 = E3.formal_group()

The group law attached to a formal group is a power series in two variables, called £1 and £2 by sage.

Gl.group_law(1l5); G3.group_law(15)
tl1 + O(t1inr1l5) + (1 + 21*ti1nd4 + 17*t1NA6 + 21*t1A8 + 7*t1Al0 +
18*t1n12 + 19*tin14 + O(t1nr15))*t2 + (19*tl1A3 + 5*t1A5 + 3*t1n9 +
10*t1n11 + 4*t1A13 + 0(t1Alb))*t2n2 + (19*t1A2 + 16*tl1Nd + 8*t1N6 +
tin8 + 10*tl1A10 + 16*tiAl12 + 3*tiA14 + O(t1N15))*t2A3 + (21*tl1 +
16*t1A3 + 16*t1A5 + 5*t1A7 + t1A9 + 18*ti1A11 + 12*t1A13 +
0(tinl5))*t2n4 + (5*t1A2 + 16*tiN4 + 20*t1N6 + 18*t1A8 + 7*t1N10 +
7*tin12 + 21*t1M14 + O(t1Al5))*t2A5 + (17*t1 + 8*t1A3 + 20*t1ns +
8*t1A7 + 6*t1NA9 + 4*t1A11 + 10*t1A13 + 0(tiAls))*t2A6 + (5*ting +
8*t1A6 + 12*t1A8 + 18*t1A10 + 15*t1A12 + 5*t1A14 + O(t1N15))*t2A7 +
(21*t1 + t1n3 + 18*tiA5 + 12*t1A7 + t1A9 + 22*t1A11 + 21*t1/13 +

NI{+ANAENYX +DON0 1L (D% +1ND 1 +1NANA 1L L% +1AANL2 1L +1NAN0 1L D29N* +1NAN1N 1+ L2%+1N19D

uLiLrti1o)) L£'O T (O Ll'2 T L1L'4 T U LL'O T LL'O T LU LL'1lU T U Llitlcs
+ 22*t1nM14 + 0(t1n15))*t27A9 + (7*tl1 + 10*t1N3 + 7*t1N5 + 18*t1AT7 +
20*t1A9 + 17*t1nM11 + ti1A13 + O(t1ndls))*t2/10 + (10*t1A2 + 18*t1ng +
4*t1Nn6 + 22*t1A8 + 17*t1N10 + 13*td1A12 + O(tdinls))*t2nA11 + (18*tl1 +
16*t1A3 + 7*t1A5 + 15*t1A7 + 6*t1A9 + 13*tin11l + 8*t1N13 +
0(t1715))*t2A12 + (4*t1A2 + 12*t1/4 + 10*t1A6 + 21*t1A8 + t1A10 +
8*t1A12 + 14*t1/14 + O(t1A15))*t2A13 + (19*t1 + 3*t1A3 + 21*t1A5 +
5*t1A7 + 22*t1A9 + 14*t1A13 + O(tl1A15))*t2A14 + O(t2A15)
t1 + 0(t1nl5) + (1 + 16*tind + 2*t1N6 + 10*t1NA8 + 11*t1N10 + 6*t1Al2
+ t1714 + 0(t1A15))*t2 + (9*t1A3 + 6*t1A5 + 8*t1A9 + 19*t1A1l +
22*t1A13 + O(t1A15))*t2A2 + (9*t1A2 + 10*t1A4 + 6*t1A6 + 18*t1A8 +
11*t1/10 + 19*t1A12 + 18*t1/14 + O(t1A15))*t2A3 + (16*t1 + 10*t1A3 +
12*t1A5 + 21*t1A7 + 18*t1MA9 + 7*t1A11 + 20*t1A13 + O(tdinls))*t2n4 +
(6*t1Nn2 + 12*t1N4 + 15*t1A6 + 11*t1A8 + 4*t1/10 + tin12 + 10*tinld +
0(t1nl5))*t2A5 + (2*tl + 6*t1NA3 + 15*t1NA5 + t1A7 + 10*t1NA9 +
22*t1M11 + O(t1A15))*t2A6 + (21*t1N4 + t1A6 + 20*t1A8 + 19*t1n10 +
12*tdA12 + 16*t1n14 + O(tdAl5))*t2A7 + (10*t1 + 18*tdA3 + 11*ti1A5 +
20*t1A7 + 18*t1A9 + 5*t1Ad11 + 6*t1A13 + O(tdAl5))*t2A8 + (8*t1n2 +
18*tiA4 + 10*t1N6 + 18*t1A8 + 21*t1A10 + 15*t1A12 + O(taANl5))*t2nA9 +
(11*t1 + 211*tdA3 + 4*tdA5 + 19*t1A7 + 21*t1A9 + 7*t1A11 + t1A13 +
0(t1nl5))*t2A10 + (19*tdA2 + 7*tdNd + 22*t1N6 + 5*t1N8 + 7*t1nN10 +
21*t1A12 + 2*t1/14 + O(t1A15))*t2A11 + (6*tl + 19*t1A3 + ti1A5 +
12*tdA7 + 15*t1A9 + 21*t1A11 + 4*td1A13 + O(t1Al5))*t2A12 + (22*td1N2
+ 20*t17M4 + 6*t1N8 + t1N10 + 4*tdA12 + 13*tiN14 + O(tdnAl5))*t2n13 +
(t1 + 18*t1A3 + 10*t1A5 + 16*t1A7 + 2*t1A11 + 13*t1/A13 +
O(t1A15))Y*t2A14 + 0(t2A15)

GO=EllipticCurve(j=F(0)).formal_group(); GO

Formal Group associated to the Elliptic Curve defined by yr"2 + y =
XxN3 over Finite Field in b of size 2A2

GO.mult_by_n(2)
tA4 + 0(tA10)
G1l.mult_by_n(23,prec=30)
0(tn30)
G3.mult_by_n(23, prec=30)
8*tNA23 + 0(tA30)

Square roots mod p

The problem is this: if @ is a non-zero integer mod p, it's easy to see whether a is a square mod p by computing aP1/2 mod p:
the result is +1 if and only if a is a square. Suppose it is? How do we find a square root of @? There's an interesting algorithm,

Cipolla's algorithm http://en.wikipedia.org/wiki/Cipolla's_algorithm, that solves the problem. I learned about it from my
colleague Matt Baker. It's easy to implment in sage.

The method is as follows: take random values of ¢ until you find a £ such that t2 — a is a non-square. To F,, adjoin a square
root of t2 — a; call it w. Then (a + w)(p+1)/2 is a square root of a.

p=1234567891; a= 11; kronecker(a,p)
1

Thus 11 is a square mod p = 1234567891. Can we find its square root?

t=7,; kronecker(tAr2-a,p)

|

The valiue ¢ = 7 wasn't hard to find: I tried¢ = 1, ... until I got to 7.

R.<x> = PolynomialRing(GF(p)); R
Univariate Polynomial Ring in x over Finite Field of size 1234567891
t=7; b=(tr2-a)%p,; S.<omega> = R.quo((x"2-b)); S

Univariate Quotient Polynomial Ring in omega over Finite Field of
size 1234567891 with modulus x"2 + 1234567853

squareroot= (t+omega)"((p+1)/2); squareroot
77590393

In other words, the algorithm outputs 77590393 as a square root of 11 mod p. We should check the result!

77590393/M2%p
11

Fin

Solving Cubic Equations

Benedict Gross and William Stein

January, 2012

Algebraic equations

Pythagoras (600 BCE) Baudhayana (800 BCE)

Differential equations

F(T) = F(T) dF /dT = F F(0) =1

F(T)=exp(T) =1+ T+ T?/2+T3/6+ T4/24 + T5/120 + ...
1,000,000,000- India

800,000,000-
600,000,000-
400,000,000-

200,000,000+

0-# r ~ t - T T T T T]
1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Pythagorean triples

& + b? = ¢? has solutions (3,4,5),(5,12,13),(7,24,25), ...

There are more solutions on a Babylonian tablet (1800 BCE):

(3,4,5)
(5,12,13)
(7,24,25)
(9,40,41)
(11,60,61)
(13,84,85)
(15,8,17)

)
(33.56, 65)
(35,12,37)
(39,80, 89)
)
(55. 48, 73)
)
)

(63,16,65
(65,72,97

The general solution of a2 + b? = ¢2

x = a/c and y = b/c satisfy the equation x> + y® =1

y N 1-1 2t
1+ x 1+1¢2 1+1¢2

Write t = p/q. Then

I _ 2qgp
TP T @
a=q° - p° b=2qp c=q*+p

t=1/2 — (a,b,c) =(3,4,5)

t=2/3— (a,b,c)=(5,12,13)

t=3/4 — (a,b,c)=(7,24,25)

Cubic equations
After linear and quadratic equations come cubic equations, like

X34+ y3 =1 V2ry=x3-x
Here there may be either a finite or an infinite number of
rational solutions.

The graph

w

Ve+y=x3—x
4 4
2 2
0 b 0
2 2
4 4

The limit of a secant line is a tangent

Yoty =x-x

Large solutions
If the number of solutions is infinite, they quickly become large.
(0, 0)
(1, 0) y2 +y= X3 — X
(-1, -1)
(2, -3)
(1/4 -5/8)
(6, 14)
(-5/9, 8/27)
(21/25, -69/125)
(-20/49, -435/343)
(161/16, -2065/64)
(116/529, -3612/12167)
(1357/841, 28888/24389)
(-3741/3481, -43355/205379)
(18526/16641, -2616119/2146689)
(8385/98596, -28076979/30959144)
(480106/4225, 332513754/274625)
(-239785/2337841, 331948240/3574558889)
(12551561/13608721, —-8280062505/50202571769)
(-59997896/67387681, -641260644409/553185473329)
(683916417/264517696, -18784454671297/4302115807744)
(1849037896/6941055969, -318128427505160/578280195945297)
(51678803961/12925188721, 10663732503571536/1469451780501769)
(-270896443865/384768368209, 66316334575107447/238670664494938073)

Even the simplest solution can be large
5115523309x — 140826120488927

y+y=x

Numerator of x-coordinate of smallest solution (5454 digits

3977705271 806775000 140056423418271 70087932265

73739333050381 1785800

323388332382

Denominator:

8003270871301 1933337 0857790 07303833382 1268793830943 337 1288

47262187700616535463492710 15

505305124370336743001 1413060104
Auv<6V7niz£47|0275‘6ﬁ\RoennJ 363553

aos2

280

S LT SR e e e R e

0583 3670201051935 6432077 49150350 1732345 | 8807300294 1507413960740 8%

e Ias 8ET8 84007 1507353530e8
320178851190 725337

12212776306731377152677102
o

83552 1355071000 1686807 3003313733155

350381173753

733

1531017335 093667832099339393 1957202507842 | 13083883601 7714997
2706703339742731738255 156318 828538885833353

2407030018 0R35035R303 232783623 11RRIE

087375001 1387083008 818063 161037337

75

103639303965533
92300"

o1

H 230330 935
a2 10535700 1632030 Texns 0182013

37333800682
20083282 00e 2301

170830, 9847301187

330233757394

1335515610141

5335419337

The rank

The rank of E is essentially the number of independent
solutions.

» rank (E) = 0 means there are finitely many solutions.
» rank (E) > 0 means there are infinitely many solutions.
» The curve E(a) with equation

yly+1)=x(x-1)(x+a)
hasrank =0,1,2,3,4fora=0,1,2,4, 16.

The rank is finite

Can it be arbitrarily large?

The current record is rank(E) = 28

}/2 +Xy+y= x3 — x? — 20067762415575526585033208209338542750930230312178956502X+
344816117950305564670329856903907203748559443593191803612660082962919394 48732243429

P; = [-2124150091254381073292137463, 259854492051899599030515511070780628911531]
P, = [2334509866034701756884754537, 18872004195494469180868316552803627931531]
P3 = [-1671736054062369063879038663, 251709377261144287808506947241319126049131]
P, = [2139130260139156666492982137, 36639509171439729202421459692941297527531]
Ps = [1534706764467120723885477337, 85429585346017694289021032862781072799531]
Pg = [-2731079487875677033341575063, 262521815484332191641284072623902143387531]
P; = [2775726266844571649705458537, 12845755474014060248869487699082640369931]
Pg = [1494385729327188957541833817, 88486605527733405986116494514049233411451]
Py = [1868438228620887358509065257, 59237403214437708712725140393059358589131]

= [2008945108825743774866542537, 47690677880125552882151750781541424711531]
P1; = [2348360540918025169651632937, 17492930006200557857340332476448804363531]
Py = [-1472084007090481174470008663, 246643450653503714199947441549759798469131]
P13 = [2924128607708061213363288937, 28350264431488878501488356474767375899531]
= [5374993891066061893293934537, 286188908427263386451175031916479893731531]
P15 = [1709690768233354523334008557, 71898834974686089466159700529215980921631]
P1g = [2450954011353593144072595187, 4445228173532634357049262550610714736531]
P17 = [2969254709273559167464674937, 32766893075366270801333682543160469687531]
Pig = [2711914934941692601332882937, 2068436612778381698650413981506590613531]
P19 = [20078586077996854528778328937, 2779608541137806604656051725624624030091531]
Pyo = [2158082450240734774317810697, 34994373401964026809969662241800901254731]
Py; = [2004645458247059022403224937, 48049329780704645522439866999888475467531]
Py = [2975749450947996264947091337, 33398989826075322320208934410104857869131]
Py3 = [-2102490467686285150147347863, 259576391459875789571677393171687203227531]
Pyy = [311583179915063034902194537, 168104385229980603540109472915660153473931]
Py5 = [2773931008341865231443771817, 12632162834649921002414116273769275813451]
[2156581188143768409363461387, 35125092964022908897004150516375178087331]
[3866330499872412508815659137, 121197755655944226293036926715025847322531]
[2230868289773576023778678737, 28558760030597485663387020600768640028531]

GG
NN
® 3
oo

Bryan Birch and Peter Swinnerton-Dyer made a prediction for
the rank, based on the average number of solutions at prime
numbers p.

Primes

A prime p is a number greater than 1 that is not divisible by any
smaller number.

2,3,5,7,11,13,17,19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67,71,73,79, 83, 89, 97,101, 103, 107, 109, ...

There are infinitely many primes. The largest explicit prime
known is 243112609 _ 1 with 12,978,189 digits.

80
60
40+

201

I I I I .
100 200 300 400 500

The Prime Number 29689 _ { —

478220278805461202952839298660005909741497172402236500851334510991837895094266297027892768
611270789458682472098152425631930658505267683408748083442943326479742589324762368833102163
320895484735480579994334130982598901374380618710958104314868081377832153049671560156328262
441404039814320762203627219040859079053720347525610556407157926386787524098557335652265610
854212857732105787905232886503535587361567936365588992571157442015383209175242284304691881
142740066213555930351685370397681268638575037622778794958058208183126172570100349820651232
987267723348951095346937568303703837399969677158578890563911552261340549570718452415821920
822376644205901459333065700972215396237685342377048613857808977562130116781129916640736174
660669780818675796691467124607371290420058840892318638773788767529288695379706698096740605
353012285353903696549022478492464900795489867850331465554647550450168618735486696437455261
412064078294962245202778896213860266593314768769632208950427879162465151931232783175655377
937719452467339581928148666857638401959072017941334958297031939388438881049454604034208753
656362833215207318161430072176937142623851754052084521466531330118355196259184955893849902
534878037671647707393063443684008446825593744345169031599934913766463896897261419901530490
654781905622717122494707073971630095377574344130792050186353223446654564569577433188504497
825014866346737213039209989485214519099823287877248665051301081676990289251871925006694721
570653621624869624056925686555429622155221156042777866254593699880107018616260147647429345
983018365127336346273267588306070141035925482914977433929717368076561095959991130918978823
835013163567266143596921823997719693387439540399662367558052821120713639637085805605116078
177098545257698803233381293927275210194462952749031383555198519709592888523641530178921867
514101454120309619127093436903952209828031766894206132557234964363840305648734929088422378
629288747223121903238528103409182430661894774072726552428489330447486145494207679904173944
716583828167141043583120679050191452732628737033997470720601688256282740427017032260672798
034347932642573009183981307771932245539476396060658821432660315614149074055769805516626304
444758375671151649018119344223685942415184379538933576543212994405485534515585927342456182
514681371472060628778102124092370802149229834963517952727030296297015692768651163505008040
728267425236264469571076976886613730278931360967438271901738550848466337347612084356798306
505955807293511063754424080735066708298723377976887493898358452309563899612061631863439196
711208646438464947096323007272920091258614726799976249670985276950353573392441620265772074
124868359220282898331114083392330243391779797699031142584361935093675448381119440881276338
808420445180491245438388418080094527562666805762895476338464130510775377324708249580453335
571748196502507081973046642282610569751056428979895118219288597635222905389894873761464213
9910911535864505818992696826225754111

Primality testing
Determining that n > 1 is a prime can be done quickly.

"PRIMES is in P”

AKS: Manindra Agrawal, Neeraj Kayal, and Nitin Saxena (2002)
If n fails the primality test, it is more difficult to factor it.

123018668453011775513049495838496272077285356959533
479219732245215172640050726365751874520219978646938
995647494277406384592519255732630345373154826850791
702612214291346167042921431160222124047927473779408
0665351419597459856902143413 = RSA-768 =

334780716989568987860441698482126908177047949837137
685689124313889828837938780022876147116525317430877
37814467999489

X
367460436667995904282446337996279526322791581643430
876426760322838157396665112792333734171433968102700
92798736308917

What do we mean by a solution of the cubic equation at the
prime number p?

yP+y=x3—x
(x,y) =(3,1) is a solution at p = 11

There are finitely many solutions A(p) at each prime p.

[1 J T T T T 70 T L ERER) EA A e R AR EECRERE EREE |
20F @ i . IR ‘ : Y . e : :
: : : e : BOF g g @ g
o . @ @ D Og: o e o
‘ ‘ ‘ ‘ ‘ °

[] ° : 09) e @
R T Y L e Ll e
: i ° : : : 30 : ' o® ° e e
5k . .] 20p - e e, g e
10F i @ @@ g -

A : : : : ‘ : o L e : :
Oe®@ i ooiioios , EEVETSPRTSOe | O‘ IR R EE R S ST S SR SCEUETE EFER T I SN |
0 5 10 15 20 0 10 20 30 40 50 60 70

p=23, A(23)=22 p=T1, A(71)=63

It is common to write

Alp) =p+1—a(p)
We define the L-function of E by the infinite product
L(E,s)=[[(1 —alp)ps+p')" => a(nn~*
P

This definition only works in the region s > 3/2, where the
infinite product converges.

1

0.8 e[

] S R R

0.4F

0.2f o]

0

If we formally set s = 1 in the product, we get

[0 -ap+p)" =]]p/AWP)
p

)

If A(p) is large on average compared with p, this will approach
0. The larger A(p) is on average, the faster it will tend to 0.

coooooo
oORNWRARUION

100 200 300 400 500

The conjecture of Birch and Swinnerton-Dyer

1. The function L(E, s) has a natural (analytic) continuation to
a neighborhood of s = 1.

2. The order of vanishing of L(E, s) at s = 1 is equal to the
rank of E.

3. The leading term in the Taylor expansion of L(E, s) at
s = 1 is given by certain arithmetic invariants of E.

L(E,s) = c(E)(s — 1)a™(E)

The most mysterious arithmetic invariant was studied by John
Tate and Igor Shafarevich, who conjectured that it is finite. Tate
called this invariant I1I.

The Birch and Swinnerton-Dyer Conjecture
L(E,s) = c(E)(s — 1)a™kE) 1 ...
o(E) — Qe - Rege ’#]—EE 11 ¢o

#E(Q)tor

Each quantity on the right measures the size of an
abelian group attached to E.

Natural (analytic) continuation
The infinite sum > ° ; x" converges when —1 < x < 1.

The natural (analytic) continuation of L(E, s) = > a(n)n~° was
obtained by Andrew Wiles and Richard Taylor (1995). They
proved that the function defined by the infinite series

F(T) — Z a(n)eZﬂ'iHT

is a modular form.

Combining a limit formula | proved with Don Zagier (1983) with
work of Victor Kolyvagin (1986) we can now show the following.

If L(E, 1) # 0 the rank is zero, so there are finitely many
solutions.

If L(E,1) =0and L'(E, 1) # 0 the rank is one, so there are
infinitely many solutions.

In both cases, we can also show that I1I is finite.

When the order of L(E, s) at s = 1 is greater than one we
cannot prove anything in general. ..

But the computer has been a great guide.

Here is a summary of the evidence for the simplest rank 2 curve

y(y +1)=x(x—1)(x +2)

» the order of vanishing is equal to 2
» most primes up to 50,000 do not divide the order of 111

The average rank

Manjul Bhargava has recently made progress on the study of
the average rank, for ALL cubic curves with rational coefficients.

Enumerating the curves

» Every such curve has a unique equation of the form
y? = x3 + Ax + B where A and B are integers (not divisible
by p* and p®, for any prime p).

» Define the height H(E) as the maximum of the positive
integers |Al® and |B|.

» For any positive real number X, there are only finitely many
curves with H(E) < X.

» Call this number N(X). It grows at the same rate as
(X)1/2(X)1/3 _ X5/6_

v

v

v

v

Define the average rank by the limit as X — oo of

NCX) > rank(E)

H(E)<X

We suspect that this limit exists, and is equal to 1/2.

In fact, we think that on average half the curves have rank
zero and half have rank one.

Bhargava and Shankar have shown why there is an upper
bound on the limit, and have obtained a specific upper
bound which is less than 1.

Thank you

JMM -- Solving Cubic Equations

Solving Cubic Equations (JMM 2012 Short Course)

William Stein

This worksheet accompanies these slides.

Pythagorean triples
@interact
def _(t=(1/4,(1/16,1/8,..,1))):
to = ¢t

X,y,t=var('x,y,t")
show([x==(1-tA2)/(1+tA2), y==2*t/(1+tr2)])

t = to
(x,y) = ((1-tAr2)/(1+tr2), 2*t/(1+tA2))
a=1/3

G = circle((0,0), 1, color='blue', thickness=3)

+= arrow((-1-a,-t*a), (x+a,y+t*a), head=2, color='red')

+= point((@,t), pointsize=150, color='black', zorder=100)

+= point((-1,0), pointsize=150, color='black', zorder=100)

+= point((x,y), pointsize=190, color='lightgreen', zorder=100)

+= text("$(0, %s)$"%t, (-.3, t+.2), fontsize=16, color='black')

+= text(r"$(%s,\,%s)$"%(x,y), (x+.35, y+.25), fontsize=16, color='black')
G.show(aspect_ratio=1, ymin=-1.1, ymax=1.1, xmax=1.3, xmin=-1.3, fontsize=0,

figsize=6)

OOOO 0O

t 1/4

=1 2t
T Ter1Y T Pt

(15/17, 8/17)

Cubic equations

var('x,y")
implicit_plot(x~3 + yA3 == 1, (x,-2,2), (y,-2,2), aspect_ratio=1, figsize=5,
gridlines=True)

var('x,y")
implicit_plot(ynr2 + y == xA3 - X, (%x,-2,3), (y,-4.5,4),

figsize=5, gridlines=True)

)

@interact
def _(equation='xA3 + yA3 == 1",

min=-2, xmax=2, ymin=-2, ymax=2,

= sage_eval(equation, {'x':x, 'y':y})

X
X,y = var('x,y")

eqn

print eqgn

G = implicit_plot(eqn,

gridlines=gridlines)
G.show(figsize=4)

equation [x"3+y"3==1

(X, xmin, xmax),

(y,ymin, ymax),

aspect_ratio=1/2,

aspect_ratio=1, gridlines=True):

aspect_ratio=aspect_ratio,

Xmin
Xmax

ymin
ymax

aspect_ratio

gridlines

-2

-2

<

XN3 + yA3 == 1

The Group Law

How the figure in the slide was made:

OO0 omom

EllipticCurve([0,0,1,-1,0]);
E.plot(plot_points=600,

+= arrow((-2,1), (3,-4), head=2,
+= points([(-1,0), (©,-1), (2,-3)], color='black"',
+= text("$(2,-3)%", (1.3,-3.1),

+= text("$(-1,0)%", (-.9,1), fontsize=18,

+= text("$(0,-1)$", (-.7,-1.85),

.show(gridlines=True, frame=True,

print E
thickness=2)

color='red', width=2)

pointsize=70,

fontsize=18, color='black')

aspect_ratio=1/2,

color="'black")
fontsize=18, color="black')

xmax=3.1,

xmin=-2,

Elliptic Curve defined by yAr2 + y = xA3 - x over Rational Field

zorder=50)

figsize=5)

E
P

EllipticCurve([0,0,1,-1,0])
E([-1,0]); Q = E([06,-1]); R = E([2,-3])

print P + Q + R
print -(P+Q)
print 7*P
(6 : 1 : 0)
(2 : -3 : 1)
(1849037896/6941055969 : -260151768440137/578280195945297 : 1)
for n in range(10):

O~NOOUILA_WNREO

print n, n*P

(06 : 1 : 0)

(-1 : 0 : 1)

(6 : -15 : 1)

(-20/49 : 92/343 : 1)

(1357/841 : -53277/24389 : 1)

(8385/98596 : -2882165/30959144 : 1)

(12551561/13608721 : -41922509264/50202571769 : 1)
(1849037896/6941055969 : -260151768440137/578280195945297 : 1)
(4881674119706/5677664356225

-4590618167456560854/13528653463047586625 : 1)

9

(2786836257692691/16063784753682169

-1600059682932627475385835/2035972062206737347698803 : 1)

E =

The Rank

EllipticCurve([0,0,1,-1,0])

E.rank()

1

E.rank?

File: /home/wstein/sage/sage-4.8.alpha5/localllib/python2.6/site-packages/sage/schemes/elliptic_curves/ell_rational_field.py
Type: <type ‘instancemethod’>
Definition: E.rank(use_database=False, verbose=False, only_use_mwrank=True, algorithm="mwrank_lib’, proof=None)
Docstring:

Return the rank of this elliptic curve, assuming no conjectures.

If we fail to provably compute the rank, raises a RuntimeError exception.

INPUT:

use_database (bool) - (default: False), if True, try to look up the regulator in the Cremona database.

verbose - (default: None), if specified changes the verbosity of mwrank computations. algorithm -

- 'mwrank_shell' -call mwrank shell command

- 'mwrank_1lib"' - call mwrank c library

only_use_mwrank - (default: True) if False try using analytic rank methods first.

proof - bool or None (default: None, see proof.elliptic_curve or sage.structure.proof). Note that results obtained from databs
considered proof = True

OUTPUT:

e rank (1nt) -the rank ofthe elliptic curve.

IMPLEMENTATION: Uses L-functions, mwrank, and databases.

EXAMPLES:

sage: EllipticCurve('1la').rank()

gage: EllipticCurve('37a').rank()

iage: EllipticCurve('389a').rank()

gage: EllipticCurve('5077a').rank()

2age: EllipticCurve([1, -1, 0, -79, 289]).rank()

gage: EllipticCurve([0, 0, 1, -79, 342]).rank(proof=False)
iage: EllipticCurve([0, 0, 1, -79, 342]).simon_two_descent()[0]
5

Examples with denominators in defining equations:

sage: E = EllipticCurve([0, 0, 0, 0, -675/4])
sage: E.rank()

0

sage: E = EllipticCurve([0, 0, 1/2, 0, -1/5])
sage: E.rank()

1

sage: E.minimal_model().rank()

1

A large example where mwrank doesn’t determine the result with certainty:

sage: EllipticCurve([1,0,0,0,37455]).rank(proof=False)

0

sage: EllipticCurve([1,0,0,0,37455]).rank(proof=True)
Traceback (click to the left of this block for traceback)

Try a random curve (if you try a different one it could take a long time -- press "escape" with the cursor in the box to interrupt):

E = EllipticCurve([2012,3])
print E.rank()
print E.gens()

1
[(7753/19044 : 75356155/2628072 : 1)]

A family

def F(a):
return EllipticCurve([0, (a-1),1,-a,0])

for a in [0..20]:
print a, F(a).rank()

P NOoO O WNEREO
) WNNWNNERE O

=
o
WWNWAEANWWWWN

Exercise: Find the first @ such that F'(a) has rank 5. Rank 6.

Elkies Curve of Rank (at least) 28

E = EllipticCurve([1,-1,1, -
20067762415575526585033208209338542750930230312178956502,
34481611795030556467032985690390720374855944359319180361266008296291939448732243429])

That the first few good a, = p+ 1 — #E(F}) are negative is evidence that F has high rank:

D = E.discriminant(); [p for p in primes(1000) if D%p==0]
[2, 3, 5, 7, 11, 13, 17, 19]

for p in primes(20,200):
print E.ap(p),
-9 -16 -8 -11 -10 -12 -12 -9 -12 -15 -16 -16 -15 -13 -18 -16 -13 -6
-20 -12 -20 -19 -11 -16 -10 -22 -17 -9 -24 -12 -23 -22 -7 -10 -7 -22
-22 -25

Exercise: What is the smallest good prime p such that a, > 0?

P = [E([-2124150091254381073292137463,
259854492051899599030515511070780628911531]),
E([2334509866034701756884754537, 18872004195494469180868316552803627931531]),
E([-1671736054062369063879038663,
251709377261144287808506947241319126049131]),
E([2139130260139156666492982137, 36639509171439729202421459692941297527531]),
E([1534706764467120723885477337, 85429585346017694289021032862781072799531]),
E([-2731079487875677033341575063,
262521815484332191641284072623902143387531]),
E([2775726266844571649705458537, 12845755474014060248869487699082640369931]),
E([1494385729327188957541833817, 88486605527733405986116494514049233411451]),
E([1868438228620887358509065257, 59237403214437708712725140393059358589131]),
E([2008945108825743774866542537, 47690677880125552882151750781541424711531]),
E([2348360540918025169651632937, 17492930006200557857340332476448804363531]),
E([-1472084007090481174470008663,
246643450653503714199947441549759798469131]),

E(L4YZ441Z800U/7 /UBUO1LZLZL13303Z88Y3/, Z830UZb44314888/80U14883004/4/b(3/08YY031]),
E([5374993891066061893293934537, 286188908427263386451175031916479893731531]),
E([1709690768233354523334008557, 71898834974686089466159700529215980921631]),
E([2450954011353593144072595187, 4445228173532634357049262550610714736531]),
E([2969254709273559167464674937, 32766893075366270801333682543160469687531]),
E([2711914934941692601332882937, 2068436612778381698650413981506590613531]),
E([20078586077996854528778328937,
2779608541137806604656051725624624030091531]),
E([2158082450240734774317810697, 34994373401964026809969662241800901254731]),
E([2004645458247059022403224937, 48049329780704645522439866999888475467531]),
E([2975749450947996264947091337, 333989898260753223202089344101048578691311]),
E([-2102490467686285150147347863,
259576391459875789571677393171687203227531]),
E([311583179915063034902194537, 168104385229980603540109472915660153473931]),
E([2773931008341865231443771817, 126321628346499210024141162737692758134511]),
E([2156581188143768409363461387, 35125092964022908897004150516375178087331]),
E([3866330499872412508815659137, 121197755655944226293036926715025847322531]),
E([2230868289773576023778678737, 28558760030597485663387020600768640028531])]

P[e] + P[1]
(3108017602820373171270912268547263377137814553518653/11465117276447\
98490358769
18025580906559265708455892541414967535765727849296537785384386612174\
56501493/1227630733053376047702643420235410103 : 1)

time E.regulator_of_points(P[:7])

3.04313979267944e11
Time: CPU 3.18 s, Wall: 3.18 s

time E.regulator_of_points(P[:15])

1.97964758730350e23
Time: CPU 15.72 s, Wall: 15.71 s

The following takes about 60 seconds (on my laptop), and shows that the 28 points are independent:

time E.regulator_of_points(P)
Traceback (click to the left of this block for traceback)

__SAGE__
points([(x,y) for x,y,_ in P]) + plot(E, color='grey', xmax=2e28, ymin=-50)

2.5e42 -

2ed42

T
%,
\\\

Primes

prime_range(50)

[2, 38, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
primes(50)

<generator object primes at 0x5c53d20>
for p in primes(50):

print p,
2 35 7 11 13 17 19 23 29 31 37 41 43 47
@interact

def _(n=(20,30,..,2000)):
prime_pi.plot(®, n).show(figsize=[12,3],gridlines=True)

n 20

I - N -
T

time p = 27243112609 - 1
Time: CPU 0.00 s, Wall: 0.01 s

It takes a while to compute the string representation of p.

time s_bigp = str(2/443112609 - 1)
len(s_bigp)

-_—— AT a4 A A2 - PR B T a- A~

lime: CPU 14.81 S, wall: 1.0z S
12978189

@interact

def _(digits = (5,20,..,10000)):
print "Showing %.5f percent of the digits"%(100*2.0*digits/len(s_bigp))
print "p = " + s_bigp[:digits] + ' ... ' + s_bigp[-digits:]

digits 5

Showing 0.00008 percent of the digits
p = 31647 ... 52511

E = EllipticCurve([©0,0,1,-1,0]); E
Elliptic Curve defined by yA2 + y = xA3 - x over Rational Field

E23 = E.change_ring(GF(23)); E23
Elliptic Curve defined by yAr2 + y = xA3 + 22*x over Finite Field of
size 23

E23.plot(pointsize=50, figsize=4, gridlines=True)

L 1] : : . L.
20f @ i @
: ; e :
: ¢ : :
L 5 E E
: ®* :
: : : ®
: . : N
LI ;
5L e R
; .
® :
L 2 ' . ? —
5 10 15 20

Exercise: Make an interact that has a slider letting you select a prime, which plots the graph of E modulo that prime.

The L-Series

E = EllipticCurve([0,0,1,-1,0])

— C lTeaAavainn /AR |

L — C..1DdTIl1lEd|), L

Complex L-series of the Elliptic Curve defined by yAr2 + y = xA3 - X
over Rational Field

show(line([(x,L(x)) for x in [1.5,1.6, .., 8]]), figsize=[8,3], xmin=0, ymin=0)
1_
0.8
0.6
0.4 -
0.2 -
1 2 3 4 5 6 7 8
@interact
def _(E = ['yNr2 + y = XA3 - xN2', 'yA2 + y = XA3 - Xx',
'a rank 4 curve', 'elkies rank>=28 curve', '2012'],
B = (30..1000)):
if E == 'yA2 + y = XA3 - xA2':
E = EllipticCurve([0,-1,1,0,0])
r = E.rank()
elif E == 'yA2 + y = xA3 - x'":
E = EllipticCurve([0,0,1,-1,0])
r = E.rank()
elif E == 'a rank 4 curve':
E = EllipticCurve([1, -1, 0, -79, 289])
r =4
elif E == 'elkies rank>=28 curve':

E = EllipticCurve([1,-1,1,
-20067762415575526585033208209338542750930230312178956502,

34481611795030556467032985690390720374855944359319180361266008296291939448732243429])

r = II>:28II

elif E == '2012"':
E = EllipticCurve([0,2012])
r = Il?ll

L_approx = 1

print '%4s%6s%5s%9s%20s'%('p', 'A(p)', 'p/Ap', ' prod p/Ap', 'Rank = %s'%r)
v = [
t — T

for p in primes(B):
if E.discriminant()%p:
Ap = p+1-E.ap(p)
L_approx *= float(p/Ap)
t += '%4s%4s%8.3Ff%8.3F\n'%(p, Ap, float(p/Ap), L_approx)

v.append((p, L_approx))
(line(v) + points(v,color='black')).show(figsize=[8,2])

Nnrint +

'JIJ.IIL L

E |y2+y=x"3-x"2 y"2+y=x"3-x arank4curve | elkiesrank>=28 curve 2012

B 30

Natural (analytic) continuation

var('x")

f = 1/(1-x)

plot(f, -6, 2, figsize=[4,2], ymax=5, ymin=-5)
4_
2_

— |_-_'_|-_.'.‘H' |
+] 5 4 3 2 -1

2 F
4 [

f.taylor(x,0,5)
XA5 + XN4 + XA3 + xN2 + X + 1

The Birch and Swinnerton-Dyer Conjecture:

A Rank 1 Curve

= EllipticCurve([0,0,1,-1,0])
= E.lseries()
ser = L.taylor_series(); Lser

0.305999773834052*z + 0.186547797268162*zA2 - 0.136791463097188*zA3
+ 0.0161066468496401*z"4 + 0.0185955175398802*zA5 + 0(z"6)

c = Lser[1]; c
0.305999773834052

Omega_E = E.period_lattice().omega(); Omega_E
5.98691729246392

Reg_E = E.regulator(); Reg_E
0.0511114082399688

R L e T [. L Y L —

TN1S "uUuses” TNe Tormula; DUT we 00 KNOW 1n TNls case that Sha_E=1.
Sha_E = E.sha().an(); Sha_E

1

prod_cp = E.tamagawa_product_bsd(); prod_cp
1

T = E.torsion_order()7r2; T
1

Omega_E * Reg_E * Sha_E * prod_cp / TA2
0.305999773834052

A Rank 2 Curve

E = EllipticCurve([0,1,1,-2,0])

L = E.lseries()

Lser = L.taylor_series(); Lser
-2.69129566562797e-23 + (1.52514901968783e-23)*z +
0.759316500288427*zN2 0.430302337583362*z13 -
0.193509313829981*zA4 + 0.459971558373642*zA5 + 0(z"6)

E.rank()

2

If you solve for the order of the Shafarevich-Tate group in the conjecture:

E.sha().an()
1.00000000000000

S = E.sha(); S

Tate-Shafarevich group for the Elliptic Curve defined by yn"2 + y =
XA3 + xA2 - 2*x over Rational Field

The following proves that p = 5, 7 do not divide the order of this group:

S.p_primary_bound(5)
(0]

S.p_primary_bound(7)
0]

Open Problem: Prove that the Shafarevich-Tate group of E is finite.

A Rank 4 Curve

C — ClTTant+anCuvun/Tn AK A 12 N1\ C

C — CLlllpPUlLLIULULUI VT |YU,1U,4,"1U,U]), L

Elliptic Curve defined by yA2 + y = xA3 + 15*xA2 - 16*x over

Rational Field
E.rank()
4
E.gens()
[(-15 : 15 : 1), (-14 : 20 : 1), (-51/4
1)1]
L = E.lseries()
Lser = L.taylor_series(); Lser

4.32638791417839e-24 + (-1.96674959799307e-23)*z +
(2.05660099586894€-22)*zA2 + (-7.97704812013524e-22)%zA3 +

187/8

1),

10.8463853245874*zN4 - 49.3070071384507*zA5 + 0(zN6)

Open Problem: Prove that L(E, s) vanishes to order 4 at s = 1.

(22

132

Elliptic Curves over the Rational Numbers

Elliptic curves over (Q: Creation

Given a vector $[a_1,a_2,a_3,a_4,a_6]% of rationals, it is easy
to create the elliptic curve with Weierstrass equation
$$yN2+a_1xy+a_3y=x"3+a_2xN2+a_4x+a_6.3%$%

Given a vector [aj.,as, a3, a4, ag] of rationals, it is easy to create the ellipt
equation

sf—ﬂwy—ﬂw=wﬁ—nw2—mr—aw
(<]

i | 3
E=EllipticCurve([0O,-1,1,-10,-20]);
E

V¥ +y==x3—22— 10z — 20
#Basic Invariants

print E.discriminant().factor();
print E.conductor();
print E.j_invariant().factor ()
-1 * 1175
11

-1 * 2A12 * 11nA-5 * 3173
plot(E)

10

-10

p i »
[é; EllipticCurve('11a') i
v +y=x%—22— 10z — 20
v+y=z3— 22— 10z — 20
EllipticCurve('11a'); EllipticCurve('101a');
EllipticCurve('1001a');

P+y=a3—z2— 10z — 20
Y+y=a+a2i-z-1
Y2 +y =% — 22 — 158812 + 778423

E.an(103); #This is the coefficient of 103A{-s} in the L-series
of E.

—16

E103=E.base_extend(GF(103))
E103.order ()

120

103+1-120
—16
E.anlist(20)
0,1,-2,-1,2,1,2,-2,0,—2,—-2,1,-2,4,4, —1,—4,—-2,4,0, 2|
E.modular_form()

q—2¢" — ¢ +2¢" + ¢ + O(¢°)
#The Mordell-Weil group

The most interesting object attached to E is the Mordell-Weil
group $E(\mathbf{Q})$. This has a torsion part
$E(\mathbf{Q})_{\text{tors}}$ and a free part \mathbf{Z}/rrs.
First we'll discuss $E(\mathbf{Q})_{\text{tors}}$. Computing
$E(\mathbf{Q})_{\text{tors}}$ is generally done quickly using
the Nagell-Lutz theorem.

Traceback (click to the left of this block for traceback)

SyntaxError: invalid syntax

E.torsion_subgroup()

Z
5Z

E.torsion_points()
(0:1:0),(5:—6:1),(5:5:1),(16:—61:1),(16:60:1)]

#To list elliptic curves with given torsion structure:
for E11l in cremona_curves(range(1,1000)):
G = Ell.torsion_subgroup()
if G.order() ==
print E11,G.0

Elliptic Curve defined by yN"2 + X*y + y = XA3 - xN2 - 3*X + 3 0
Rational Field (1 : 0 : 1)

Elliptic Curve defined by ynA2 + x*y = xA3 - x + 137 over Ration
Field (2 : 11 : 1)

Elliptic Curve defined by yA2 + x*y = xA3 + 159*x + 1737 over
Rational Field (6 : 51 : 1)

Elliptic Curve defined by ynA2 + x*y = xA3 - 141*x + 657 over
Rational Field (6 : 3 : 1)

Elliptic Curve defined by yn"2 + x*y + y = xA3 - xA2 + 918*x + 5
over Rational Field (-3 : 51 : 1)

Elliptic Curve defined by ynr2 + x*y = xXA3 + 714*x - 82908 over
Rational Field (42 : 126 : 1)

Elliptic Curve defined by yA2 + x*y + y = xA3 - xN2 - 19353*x +
958713 over Rational Field (103 : 172 : 1)

Elliptic Curve defined by ynA2 + x*y = xA3 - 1661*x + 26097 over

Rational Field (-14 : 223
Elliptic Curve defined by
Rational Field (204 : 222
Elliptic Curve defined by
over Rational Field (-436
Elliptic Curve defined by
Rational Field (10 : 85

1)

yA2 + X*y = XA3 - 101946*x + 12401892

1)

yA2 + X*y = XA3 - 5774401*x + 5346023

88427 : 1)

yA2 + xX*y = xN3 + 2305*x - 15975 over

Traceback (click to the ieft of this block for traceback)

__SAGE__

<

Sage has a built-in function to compute $E(\mathbb{Q})$:
Sage has a built-in function to compute E{Q):

E.rank()
0

E37=EllipticCurve('37a'); E37

Y+y=z3—2z
E37.rank()
1
E37.gens()
[(0:0:1)]

E389=EllipticCurve('389a'); E389

Vv+y==z3+22- 2z
E389.gens()
[(-1:1:1),(0:0:1)]

E5077=EllipticCurve('5077a');

v+y=a3—Tr+6
E5077.gens()

[(—2:3:1),(—-1:3:1),(0:2:1)]

E389
v+y=z3+22- 2z
E389.integral_points()

ES077

(-2:0:1),(-1:1:1),(0:0:1),(1:0:1),(3:5:1),(4:8:1),(6:15:1),(3

[4| 1

| >

E389.S_integral_points([2])

[4| 1T

E389
VY +y=z3+22— 22
#Elliptic Curves with Complex Multiplication

E=EllipticCurve([0,0,0,1,0]); E
v=z+z

E.has_cm()
True

E.cm_discriminant() #E has CM by Z[1i]
—4

f=E.division_polynomial(3); f
3zt + 622 -1

#The roots of this polynomial are the xcoordinates of all 2-
torsion points of E.

g=37A3*f(x/3); ¢
(x2 + 18)x% — 27
K=NumberField(xnA2+1, '1i'); K
Q[il/ (& + 1)

L=K.extension(g, 'z")

(Qa]/ (¢ + 1))[2]/(#* + 1827 — 27)
L.base_field()
Qld]/(#*+ 1)

L.relative_discriminant().factor ()

((G+1))*-(3)
L.galois_group()

Galois group PARI group [8, 1, 4, "D_8(8)=[4]2"] of degret
HI 11 | |>\
L is abelian over $K=\mathbb{Q}(1)$ and unramified outside of

the primes above 2 and 3, in accord with the theory of CM
elliptic curves.

scatter_plot([(t,E.an(nth_prime(t))) for t in range(1,100)])

a0 | O
o o o0 o
30
o o 0o o
201 o o o o

-20

30| 00 o

Kl Ul I 2
El11=EllipticCurve('11a'),
scatter_plot([(t,E1l1.an(nth_prime(t))) for t in range(1,100)])

40 + O
o
30 Q
[)
_) o ° o
20 | o 00
. e o ©
o) o o C
10| © o © o 0P ©
o Do e O O 0
0 o o O o)
_ D i 1 D D 1 i 1 OI i
%lcc@? 3 0 o oo © Ocgo)
00 ~ O 0 o
$Po% oo o o
-lD_— O O o DODD
o O o
ol O o © o
| o 0@
_ 0 o ©
30| o © o

(4] I |]
The Lang-Trotter conjecture: if E is non-CM, K is an
imaginary quadratic field and $\pi_E(x,K)$ is the number of
primes below x for which
$\text{End}"O(E\otimes\mathbb{F}_p)=K$, then $\pi_E(x,K)\sim
C\sqgrt{x}/\log(x)$.
The Lang-Trotter conjecture: if £ is non-CM, K is an imaginary quadratic
number of primes below x for which End"(E @ F,) = K, then ng(r, K) ~ C\/T,

Kl & | >
def LTcount(x,D,E):

sum=0
for p in prime_range(x):
a = E.an(p)

d = an2 - 4*p
if QQ(d/D).is_square():
sum=sum+1
return sum

def g4(x):

return LTcount(x,-4,E11)*1log(x)/sqrt(x)
def g5(x):

return LTcount(x,-5,E11)*1log(x)/sqrt(x)
def g7(x):

return LTcount(x,-7,E11)*log(x)/sqrt(x)

plot([g94,95,97],(2,20000))

2 |
1.5}
l -
0.5 F
. | | . . . A] . . A A
5000 10000 15000 200
Hl 1 l I;]

A modular parametrization of a (modular) elliptic curve is a
nonconstant holomorphic map
$\phi\colon\Gamma_0O(N)\backslash\mathcal{H}\to E(\mathbb{C})$,
where N is the conductor of $ES.

A modular parametrization of a (modular) elliptic curve is a nonconstant holon
E(C), where N is the conductor of E.

Kl U | ia
E=EllipticCurve('11a')

phi=E.modular_parametrization()

X=phi.power_series()[0]; Y=phi.power_series()[1]; X; Y #g=exp(2
pi i z)
L+ 24+445¢+8¢+ ¢+ 7¢" — 11¢° + 10¢° — 1297 — 18¢° — 22¢° + 26¢'0 — 11¢"
S+ 24+ L~ 18— 17q— 26¢° — 19¢° — 37q* + 15¢° + 16¢° + 67q" + 6¢° + 144¢°-
Kl Il |)
z1=1/7;
z2=(2*z1-1)/(11*z1-5);
phi(z1); phi(z2)
(18.4384772424687 : —76.1607833071425 : 1.00000000000000)
(18.4384772424687 + 2.52001331151533 X 10~ : —76.1607833071423 — 1.62045'
Kl o | >
def f(x):
return phi(I*x)[0]

plot(f,(.01,.5))

500 |

400

300

200

100

0.1

0.2

0.3

(d]

phi(.001*I)

(16.0000000000000 : —60.9999999999999 : 1.00000000000000)

P=E(16,-61,1); P

(16 : —61:1)
E(O); P; 2*P;
(0:1:0)

16: —61:1)

L=E.lseries()

3*P; 4*P;

5*P;

Lambda=E.period_lattice()

Lambda.real_period()/5
0.253841860855911
L(1)
0.253841860855911

def f(x,y):
return phi(x+I*y)[0].abs()

phi(2*I)[0].abs()

8.22268890922212 x 1010
plot3d(lambda x, y: f(x,y), (-1,1),(.1,.2))

Get Image

#Heegner points
P=phi((2+sqrt(-7))/11)

(—5.50000000000000 — 22.4888861440490 : 103.000000000000 + 44.97777228809:
Kl I | i3
b=P[0]; b

—5.50000000000000 — 22.4888861440490:
b.algdep(2)
z2 + 11z + 536
_.discriminant().factor ()
—1-7-172
Pbar = phi((-2+sqrt(-7))/11); Pbar
(—5.49999999999998 + 22.48888614404907 : 103.000000000000 — 44.97777228809:

[4| 1] | lb]
K=QuadraticField(-7)

K(11).factor ()
(~1)- (V7 —2)- (VT +2)
P=E.heegner_point(-7).point_exact(); P
(a:4a—4:1)
a=P[0]; K=a.parent(); K
Qlal/(a* —a +2)

EK=E.base_extend(K)

Pbar=eK((1-a,-4*a)), Pbar
(—a+1:—4a:1)
Q=P + Pbar; Q
(16 : —61:1)
Q.has_finite_order()
True

Hlist=E.heegner_discriminants_1list(30); Hlist #A list of
discriminants which satisfy the Heegner hypothesis with respect
to E.

[—7,—8,—-19,—24,—35, -39, —40, —43, —51, —52, —68, — 79, —83, —84, —87, —95, -
Kl L | 3
P=E.heegner_point(-35).point_exact(); P

.1 3_ 12 2, 58 262 .
(a. 5010 — &0 T 1@t M"l)

a=P[0]; H=a.parent(); H #It turns out that H is the Hilbert
class field of Q(sqrt(-35)).

Q[a]/(a* — 12a3 + 13304 + 39964 + 3789)
K=H.subfields()[1][0]

sigma=K.embeddings(H)[0O]
Hrel=H.relativize(sigma(K.gens()[0]), 'z"')

Hrel.relative_discriminant()

(1)

	elkies
	kedlaya
	ribet
	stein-1
	stein-2
	weinstein

