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∗

Abstract

In this paper we investigate the image of the l-adic representation attached to the
Tate module of an abelian variety defined over a number field. We consider simple
abelian varieties of type III in the Albert classification. We compute the image of
the l-adic and mod l Galois representations and we prove the Mumford-Tate and
Lang conjectures for a wide class of simple abelian varieties of type III.

1 Introduction

Our main objective in this paper is the computation of the images of the Galois represen-

tations:

ρl : GF → GL(Tl(A)),

ρl : GF → GL(A[l]),

attached to certain abelian varieties of type III according to the Albert classification list

(cf. [20, p.201, Theorem 2]). We also prove the Mumford-Tate and Lang conjectures for

these varieties. To be more precise, the main results of this paper concern the following

class of abelian varieties:
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Definition 1.1. Abelian variety A/F defined over a number field F is of class B, if

the following conditions hold:

(i) A is a simple abelian variety of dimension g.

(ii) R = EndF̄ (A) = EndF (A) and the endomorphism algebra D = R ⊗Z Q is of type

III in the Albert list of division algebras with involution.

(iii) The field F is such that, for every l, the Zariski closure G alg
l of ρl(GF ) in GLVl(A)/Ql

is a connected algebraic group.

(iv) g = 2eh, where h is an odd integer and e = [E : Q] is the degree of the center E of

D.

The organization of the paper and its main results are as follows. In Sections 2 and

3, we give an explicit description of the endomorphism algebra and its involution for an

abelian variety of type III as well as the relation to various bilinear forms coming from

Weil pairing. This detailed treatment of endomorphism algebras and bilinear forms differs

significantly from that of [6] and [2]. Due to our approach the proof of Theorem 3.29, in

Section 3, is achieved in an explicit way. Theorem 3.29 is an important tool which gives

us symmetric nondegenerate forms out of symplectic forms coming from the Weil pairing.

These symmetric forms are defined over the rings of integers in the completions of the

center of D at primes over l for l � 0. In Section 4 we compute Lie algebras that lead to

the determination of (G alg
l ) � (Theorem 4.19). In Section 5 we apply Theorem 4.19 in the

proof of the Mumford-Tate conjecture for the abelian varieties of class B :

Theorem 5.11. If A is an abelian variety of class B, then

G alg
l = MT (A)⊗Ql,

for every prime number l, where MT (A) denotes the Mumford-Tate group of A, i.e., the

Mumford-Tate conjecture is true for A.

This generalizes the result of Tankeev [32] who proved the Mumford-Tate conjecture

for abelian varieties of type III, with similar dimension restrictions, such that End(A)⊗Q

has center equal to Q. In particular, Theorem 5.11 implies the result of Tankeev [32] for

abelian varieties over number fields such that G alg
l is connected for every l. We have been

very recently informed by A. Vasiu about his results [35] where he proves some cases of

the Mumford-Tate conjecture for abelian varieties of types I through IV.

On the way of the proof of Mumford-Tate conjecture, we also compute explicitly the

Hodge group and prove that it is equal to the Lefschetz group. However this is not enough
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to get the Hodge conjecture for abelian varieties of type III of class B (cf. [21]). Note that

the proof of Mumford-Tate conjecture and equality of Hodge and Lefschetz groups for

abelian varieties of type I and II of class A in [2] gave us the Hodge and Tate conjectures

for these abelian varieties. In Section 6 (Theorem 6.29) we estimate the images ρl(G �

F )

and ρl(G �

F ) where G � := [G, G] denote the closure of the commutator subgroup for any

profinite group G. This estimation gives the following theorem.

Theorem 6.31. If A is an abelian variety of class B, then for l � 0

ρl(G
� �

F ) =
�

λ|l

SO(Tλ, ψλ)(Oλ)
�,

ρl(G
� �

F ) =
�

λ|l

SO(Aλ[λ], ψλ)(kλ)
� .

Let κ be the Z-bilinear, non-degenerate, alternating pairing κ : Λ × Λ → Z given

by the polarization of A, where Λ is the Riemann lattice such that A(C) = C
g/Λ. Let

CR(Sp(Λ, κ)) be the centralizer of R in Sp(Λ, κ). In the proof of Proposition 6.23 we show

that:

CR(Sp(Λ, κ))⊗Z Zl
∼=

�

λ|l

SO(Tλ, ψλ) for l � 0.

In Section 7 we prove the following generalization of the open image theorem of Serre

[27], [29].

Theorem 7.2. Let A be an abelian variety of class B and let r(l) be the number of

primes over l in OE. Then:

(i) ρl(GF ) is open in CR(GSp(Λ, κ))(Zl) for every prime number l,

(ii) ρl(G �

F ) has index dividing 2r(l)
in CR(Sp(Λ, κ))(Zl) for l � 0,

(iii) ρl(G � �

F ) = CR(Sp(Λ, κ))(Zl) � for l � 0.

For other results concerning the images of Galois representations coming from abelian

varieties, see also [33], [34].
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2 Abelian varieties of type III and their endomor-

phism algebras

Let A/F be a simple abelian variety of dimension g such that D = EndF̄ (A) ⊗Z Q =

EndF (A) ⊗Z Q and the polarization of A is defined over F. We assume that A/F is an

abelian variety over F of type III according to the Albert’s classification list. Hence D is

a definite quaternion algebra over E with center E, a totally real extension of Q of degree

e such that, for every imbedding E ⊂ R,

D ⊗E R = H.

Observe that in this case [D : E] = 4 so g = 2eh where e = [E : Q] and h is an integer.

We take l � 0 such that A has good reduction at all primes over l (cf. [30]) and the

algebra D splits over all primes over l and l does not divide the degree of the polarization.

Let RD be a maximal order in D. Since R = EndF̄ (A) is an order in D, we observe that

R⊗Z Zl = RD ⊗Z Zl for l that does not divide the index [RD : R]. Since R is a finitely

generated free Z-module, we check that R ∩ E = O 0
E is an order in OE.

To get explicit information about the algebra D we start with a more general frame-

work. Let D be a division algebra with two involutions ∗1 and ∗2 and the center E.

For each x ∈ D we will denote x∗i to be the image of the involution ∗i acting on x. By

Skolem-Noether Theorem [24, p.103], there is an element a ∈ D such that for each x ∈ D

we have:

(2.1) x∗2 = a x∗1 a−1.

Because ∗i ◦ ∗i = idD, applying ∗2 to (2.1), we get

(2.2) a∗1 = �a

for � ∈ E and applying ∗1, we check that �2 = 1. Hence � = 1 or � = −1 (cf.[20, p.195]).

Observe that the center of D is invariant under any involution of D. Hence, by (2.1),

c∗1 = c∗2 for every c ∈ E. Let E0 = {c ∈ E; c∗1 = c∗2 = c}. Then E/E0 is an extension of

degree at most 2.

For a simple abelian variety of type III, E = E0 and E is totally real (cf. [20, p.

194]). Also in this case � = 1 in (2.2) (cf. [20, pp.193–196]). Hence a ∈ E and ∗2 = ∗1.

Therefore the division algebra D coming from a simple abelian variety of type III has a

unique positive involution ∗ , i.e., the Rosati involution. Moreover the map D → D given

by α → α∗ is an isomorphism of E-algebras so by [24, p.96, Corollary 7.14 ], the algebra D
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gives an element of order 1 or 2 in Br(E). Since D is a noncommutative division algebra,

it gives an element of order 2 in Br(E).

By [24, Theorem 32.20], every central simple E-algebra is cyclic. This shows that D

is isomorphic, as an E-algebra, to the division algebra

(2.3) D(c, d) := {a0 + a1α + a2β + a3αβ; α2 = c, β2 = d, αβ = −βα}

This isomorphism induces the unique positive involution on D(c, d) which will also be

denoted by ∗. Therefore ∗ must be the natural positive involution

(a0 + a1α + a2β + a3αβ)∗ = a0 − a1α− a2β − a3αβ

on D(c, d). From now on we identify D with D(c, d). Since D ⊗E R = H for every

imbedding E → R, we observe that c and d are totally negative numbers. Put L = E(α).

Let η = a0 + a1α and γ = a2 + a3α. Hence

η + γβ = a0 + a1α + a2β + a3αβ.

For an element δ = e + fα ∈ L with e, f ∈ E, put δ̄ = e − fα. The field L splits the

algebra D(c, d). Namely we have an isomorphism of L algebras:

(2.4) D(c, d)⊗E L → M2,2(L)

(η + γβ)⊗ 1 �→

�
η γ

dγ̄ η̄

�

From this isomorphism it is clear that

(η + γβ)∗ = Tr0(η + γβ)− (η + γβ)

because by definition

Tr0(η + γβ) = Tr

�
η γ

dγ̄ η̄

�
= 2a0,

where Tr 0 denotes the reduced trace (see [24, pp.112–116]) from D(c, d) to E. The invo-

lution on M2,2(L) induced by ∗ is of the following form:

(2.5) B ∗ = J tB J−1

where B ∈ M2,2(L) and

J =

�
0 1

−1 0

�
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Remark 2.6. It is clear that if we take in the above computations, instead of L =

E(α), the field E(β) or E(αβ), then they also split the algebra D by a formula similar

to (2.4), and the involution ∗ will induce on M2,2(E(β)) and M2,2(E(αβ)) the involution

given by formula (2.5).

Note that any maximal commutative subfield of D(c, d) has form E(a1α+a2β +a3αβ)

for some a1, a2, a3 ∈ E not all equal to zero. If Nr0 : D(c, d) → E denotes the reduced

norm, then, for every η + γβ ∈ D(c, d), we have

Nr0(η + γβ) = det

�
η γ

dγ̄ η̄

�
= (η + γβ)∗(η + γβ)

(2.7) = a2
0 − a2

1c− a2
2d + a2

3cd = a2
0 − (a1α + a2β + a3αβ)2.

For some a1, a2, a3 ∈ E not all equal to zero, put α � := a1α + a2β + a3αβ. If β � :=

b1α + b2β + b3αβ is an element of D(c, d), put c1 := a3b2 − a2b3, c2 := a1b3 − a3b1 and

c3 := a1b2 − a2b1. Then

(2.8) α �β � = a1b1c + a2b2d− a3b3cd + c1dα + c2cβ + c3αβ

and

(2.9) det




a1 a2 a3

b1 b2 b3

dc1 cc2 c3



 = −d c2
1 − c c2

2 + c2
3 ≥ 0.

Since c < 0 and d < 0, the determinant in (2.9) is zero if and only if the elements α �

and β � are linearly dependent over E. Hence it is possible to find β � in such a way that

a1b1c + a2b2d − a3b3cd = 0 and the determinant in (2.9) is nonzero. With this choice of

β �, we see that c � := α �2 < 0, d � := β �2 < 0 and α �β � = −β �α �. We observe that, for any

a �0, a
�

1, a
�

2, a
�

3 ∈ E

(2.10) (a �0 + a �1α
� + a �2β

� + a �3α
�β �)∗ = a �0 − a �1α

�
− a �2β

�
− a �3α

�β �.

Hence D(c, d) = D(c �, d �), and we can use the field L = E(α �) and the isomorphism (2.4)

for this field to split our algebra D(c �, d �). Recall that D(c, d)⊗E R ∼= H for any imbedding

E → R, so D(c �, d �)⊗E R ∼= H for any imbedding E → R. Hence all numbers c, d, c �, d �

are negative in any imbedding E → R.

For a given prime number l, throughout the paper, λ will denote an ideal in OE such

that λ|l and w will denote an ideal of OL such that w|λ.
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Let S be a finite set of primes of Z such that it contains 2 and all prime numbers

divisible by primes in the decomposition of c and d. Moreover we assume that S contains

the prime numbers divisible by prime ideals of OE that are ramified primes for the algebra

D (cf. [24, Theorem 32.1]). We can also assume that S is big enough so that RS :=

R⊗O0
E
OE,S is a maximal OE,S order of D with RS∩E = OE,S and RS = OE,S +OE,Sα+

OE,Sβ +OE,Sαβ.

Lemma 2.11. Let l /∈ S and λ | l. There is a finite set S �
of prime numbers such

that S ⊂ S �, and l /∈ S �
and there are elements α � := a1α + a2β + a3αβ ∈ RS and

β � := b1α + b2β + b3αβ ∈ RS � := RS ⊗OE,S OE,S � such that

(i) c � := α �2
and d � := β �2

are relatively prime to λ and α �β � = −β �α �,

(ii) D(c, d) = D(c �, d �) and RS � = OE,S � +OE,S �α � +OE,S �β � +OE,S �α �β �,

(iii) the maximal commutative subfield L = E(α �) of D(c, d) gives the isomorphism (2.4)

which induces the imbedding of OE,S �-algebras

(2.12) RS � → M2,2(OE,S �),

(iv) for Rλ := RS ⊗OE,S Oλ the imbedding (2.12) yields, after tensoring with Oλ, the

isomorphism of Oλ-algebras

(2.13) Rλ � M2,2(Oλ),

Proof. By [24, Theorems 22.4, 22.15 and 24.13], there is a maximal ideal M ⊂ R

such that Nr0(M) = λ. Let P ⊂ M be the unique prime ideal of R corresponding to M

(cf. [24, Theorem 22.15]). By our choice of l and [24, Theorem 32.1], we get λR = P .

It follows by [24, Theorem 22.10 and Corollary 24.12] that there is an element t ∈ λ \ λ2

such that Nr0(m) = t for some m = a0 + a1α + a2β + a3αβ ∈ M. Formula (2.7) gives

t = a2
0 − (a1α + a2β + a3αβ)2 = a2

0 − ca2
1 − da2

2 + cda2
3.

Since t ∈ λ\λ2, it is clear that ai /∈ λ for some 0 ≤ i ≤ 3. By multiplying the last formula

by −c, −d and cd, we get additional three formulas

−ct = (ca1)
2
− (a0α + ca3β + a2αβ)2 = (ca1)

2
− ca2

0 − d(ca3)
2 + cda2

2 ,

−dt = (da2)
2
− (da3α + a0β + a1αβ)2 = (da2)

2
− c(da3)

2
− da2

0 + cda2
1 ,

cdt = (cda3)
2
− (da2α + ca1β + a0αβ)2 = (cda3)

2
− c(da2)

2
− d(ca1)

2 + cda2
0 .
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Based on these four formulas, we put

α0 := a1α + a2β + a3αβ, L0 := E(α0) ,

α1 := a0α + ca3β + a2αβ, L1 := E(α1)

α2 := da3α + a0β + a1αβ, L2 := E(α2) ,

α3 := da2α + ca1β + a0αβ, L3 := E(α3) .

If a0 /∈ λ, then the equality t = a2
0 − (α0)2 shows that (α0)2 is a square in O

×

λ . So λ

splits in L0.

If a1 /∈ λ, then ca1 /∈ λ and the equality −ct = (ca1)2 − (α1)2 shows that (α1)2 is a

square in O×

λ . So λ splits in L1.

If a2 /∈ λ, then da2 /∈ λ and the equality −dt = (da2)2 − (α2)2 shows that (α2)2 is a

square in O×

λ . So λ splits in L2.

If a3 /∈ λ, then cda3 /∈ λ and the equality cdt = (cda3)2 − (α3)2 shows that (α3)2 is a

square in O×

λ . So λ splits in L3.

Thus we can choose α � = a1α + a2β + a3αβ to be an appropriate αi, and L equal

to corresponding Li for some elements a1, a2, a3 ∈ OE,S. Observe that c � := α �2 = ca2
1 +

da2
2 − cda2

3 /∈ λ by above constructions. We will construct β � := b1α + b2β + b3αβ ∈ D

such that:

(2.14) ca1b1 + da2b2 − cda3b3 = 0,

(2.15) d � := β �2 = cb2
1 + db2

2 − cdb2
3 /∈ λ.

Because c � /∈ λ, without loss of generality, we can assume that a1 /∈ λ. The case a2 /∈ λ

is done in the same way and ditto the case a3 /∈ λ under observation that (αβ)2 = −cd.

Because c < 0, d < 0, −cd < 0 in every real imbedding E → R, the equation (2.14) shows

that α � and β � are linearly independent over E and α � β � = −β � α �.

Consider the following cases.

(1) If a2, a3 ∈ λ , we can take any b2 ∈ λ and b3 /∈ λ, and compute b1 from (2.14) to

find out that b1 ∈ λ and (2.15) holds.

(2) If a2 /∈ λ and a3 ∈ λ , we can take any b2 /∈ λ, and b3 ∈ λ, and compute b1 from

(2.14) to find out that b1 ∈ λ and (2.15) also holds. Similarly we treat the case a2 ∈ λ

and a3 /∈ λ.
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(3) If a2 /∈ λ and a3 /∈ λ and if c is not a square mod λ , then taking any b2, b3 /∈ λ

such that b1 = d(ca3b3 − a2b2)/(a1c) ∈ λ we find out that (2.15) holds. Note that, in the

case c is a square mod λ we can simply take α � = α, β � = β and L = E(α) from the very

beginning to prove the lemma.

Define S � := S ∪ {p; p divisible by primes of OE dividing a1, c � and d �}. Note that

with this choice of S � we get β � ∈ RS � . Observe that using formula (2.8) and (2.14),

−c �d � = (α �β �)2 = c2
1d

2c + c2
2c

2d− c2
3cd = −cd(−c2

1d− c2
2c + c2

3).

By formula (2.9) and definition of S �, we get equality of free OE,S �-modules: OE,S �α +

OE,S �β+OE,S �αβ = OE,S �α �+OE,S �β �+OE,S �α �β �. This gives RS � := RS ⊗OE,S OE,S � =

OE,S � +OE,S �α � +OE,S �β � +OE,S �α �β �.

Observe that the elements 1⊗1, α �⊗1, β �⊗1 and α �β �⊗1 are mapped correspondingly,

via the imbeding (2.12), to elements
�

1 0

0 1

�
,

�
α � 0

0 −α �

�
,

�
0 1

d � 0

�
,

�
0 α �

−d �α � 0

�
.

Since λ splits completely in L = E(α �) and λ does not divide c � we get α � ∈ Oλ
×. Since

λ does not divide d � either, we observe that the matrices eij ∈ M2,2(Oλ) are in the image

of the map (2.13), where eij has the (i, j)−entry equal to 1 and all other entries are 0.

Hence (2.13) is an isomorphism of Oλ-algebras.

3 Bilinear forms associated with abelian varieties of

type III

Put Rl = R⊗Zl and Dl = D⊗Ql. The polarization of A gives a Z-bilinear non-degenerate

alternating pairing

(3.1) κ : Λ× Λ → Z,

where Λ is the Riemann lattice such that A(C) = C
g/Λ. This pairing, upon tensoring with

Zl ([19, diagram on page 133]), becomes Zl-bilinear non-degenerate alternating pairing

(3.2) κl : Tl(A)× Tl(A) → Zl,

derived easily from the Weil pairing. If l does not divide the degree of the polarisation of

A, then for any α ∈ Rl we get α∗ ∈ Rl (see [19, Chapters 13 and 17]) where α∗ is the image
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of α via the Rosati involution. Hence for any v, w ∈ Tl(A), we have κl(αv, w) = κl(v, α∗w)

(see loc. cit.). Let Vl(A) = Tl(A)⊗Zl
Ql, and let κ0

l : Vl(A)×Vl(A) → Ql be the bilinear

form κl ⊗Zl
Ql. For any l that is unramified in E, by [2, Lemma 3.1], there is a unique

OEl
-bilinear form

(3.3) φl : Tl(A)× Tl(A) → OEl

such that TrEl/Ql
(φl(v1, v2)) = κl(v1, v2) for all v1, v2 ∈ Tl(A). Put

(3.4) φ0
l = φl ⊗Zl

Ql : Vl(A)× Vl(A) → El.

By uniqueness of the form φl, for each α ∈ Rl and for all v1, v2 ∈ Tl(A), we have

(3.5) φl(αv1, v2) = φl(v1, α∗v2),

hence φ0
l (αv1, v2) = φ0

l (v1, α∗v2) for each α ∈ Dl and for all v1, v2 ∈ Vl(A).

Let S be the set of primes which contains all the primes described in the hypotheses

of Lemma 2.11. We can enlarge S so that it also contains all primes that ramify in E and

all primes that divide the polarisation degree of A. Now, for such an S and for any l /∈ S,

we apply Lemma 2.11 to construct the appropriate field L.

Define Tw(A) = Tl(A)⊗O0
E
Ow, Vw(A) = Vl(A)⊗E Lw and

(3.6) φw = φl ⊗O0
E
Ow : Tw(A)× Tw(A) → Ow.

Hence φ0
w := φw ⊗Ow Lw is the Lw−bilinear form:

(3.7) φ0
w : Vw(A)× Vw(A) → Lw

The form φw is non-degenerate if φl is non-degenerate.

Let eλ be the idempotent corresponding to the decomposition OEl
∼=

�
λ|l Oλ. Put

Tλ(A) = eλTl(A) ∼= Tl(A) ⊗OEl
Oλ, and Vλ(A) = Tλ(A) ⊗Oλ

Eλ. Define Oλ-bilinear form

φλ by φλ = φl ⊗O0
E
Oλ.

For l /∈ S we have Oλ = Ow. Hence φλ = φw.

Definition 3.8. Define a new bilinear form ψλ as follows.

(3.9) ψλ : Tλ(A)× Tλ(A) → Oλ,

ψλ(v1, v2) = φλ(Jv1, v2)

for all v1, v2 ∈ Tλ(A).

10





2009年12月28日 10:09
hyphen

2009年12月28日 10:10
Delete "," (comma).



This gives us the corresponding kλ-bilinear form

(3.10) ψλ = ψλ ⊗Oλ
kλ : A[λ]× A[λ] → kλ

and the Eλ-bilinear form

(3.11) ψ0
λ = ψλ ⊗Oλ

Eλ : Vλ(A)× Vλ(A) → Eλ.

By (2.4) and Lemma 2.11, we get the following isomorphisms

(3.12) Dλ := D ⊗E Eλ
∼= M2,2(Eλ),

which obviously induces isomorphisms

(3.13) Rλ
∼= R⊗O0

E
Oλ

∼= M2,2(Oλ).

Remark 3.14. We should note that an isomorphism between both sides of (3.13) can

be obtained by [24, Corollary 11.6 and Theorem 17.3] for l � 0. However these results

give an isomorphism which comes from a conjugation by an element of D⊗E Ll
∼= M2,2(Ll)

(see [24, loc. cit.]). To keep track of the action of the involution ∗ , we prefer to use the

isomorphism (3.13).

Proposition 3.15. The involution ∗ induced on Rλ
∼= M2,2(Oλ) (resp. on Dλ

∼=

M2,2(Eλ) ) from D has the form B∗ = J tBJ−1
for any B ∈ Rλ (resp. for any B ∈ Dλ).

Proof. By (2.4) and (2.5), for any B ∈ M2,2(L), we get B∗ = J tBJ−1. Hence the

claim follows by (3.12) and (3.13)

Observe that, by (2.5) for each B ∈ Rλ and for all v1, v2 ∈ Tλ(A), we have

φλ(Bv1, v2) = φλ(v1, B
∗v2) = φλ(v1, J tB J−1v2).

Therefore, for each B ∈ M2,2(Eλ) and for all v1, v2 ∈ Vλ(A), we have

φλ(Bv1, v2) = φλ(v1, B
∗v2) = φλ(v1, J tB J−1v2).

11



Proposition 3.16. For any v1, v2 ∈ Tλ(A) and B ∈ Rλ, we have

ψλ(Bv1, v2) = ψλ(v1,
tBv2)

Hence for any v1, v2 ∈ A[λ] and any B ∈ Rλ ⊗Oλ
kλ
∼= M2,2(kλ) (resp. for any v1, v2 ∈

Vλ(A) and any B ∈ M2,2(Eλ)), we have

ψλ(Bv1, v2) = ψλ(v1,
tBv2)

( resp. ψ0
λ(Bv1, v2) = ψλ(v1,

tBv2) )

Moreover ψλ (resp. ψ0
λ) is symmetric (resp. antisymmetric) if and only if φλ (φλ

0
resp.)

is antisymmetric (resp. symmetric).

Proof. We get the first equality as

ψλ(Bv1, v2) = φλ(JBv1, v2) = φλ(v1, J tB tJJ−1v2) = φλ(v1, −J tBv2) =

= φλ(v1, J tJJ−1 tBv2) = φλ(Jv1,
tBv2) = ψλ(v1,

tBv2).

The remaining claim follows by Definition 3.8 and by the observation that tJ = J−1 = −J

and J tJJ−1 = −J.

Remark 3.17. All bilinear forms ψλ, ψλ and ψ0
λ are symmetric and non-degenerate.

This follows by results of this section, [2, Lemmas 3.1 and 3.2] and by the non-degeneracy

of the pairing (3.1) which is independent of l.

We proceed to investigate some natural Galois actions. From now on, we assume that

R = EndF̄ (A) = EndF (A). Consider the representations

ρl : GF → GL(Tl(A)),

ρ0
l : GF → GL(Vl(A)),

ρl : GF → GL(A[l]).

Let G alg
l be the Zariski closure of ρl(GF ) in GLTl(A), and let G alg

l be the Zariski closure

of ρ0
l (GF ) in GLVl(A). Let G(l) alg be the special fiber of G alg

l /Zl. Note that G alg
l is the

general fiber of G alg
l /Zl. This gives natural representations

ρλ : GF → GL(Tλ(A)),

ρ0
λ : GF → GL(Vλ(A)),

ρλ : GF → GL(A[λ]).

We define G alg
λ to be the Zariski closure of ρλ(GF ) in GLTλ(A), and G alg

λ the Zariski closure

of ρ0
λ(GF ) in GLVλ(A). Let G(λ) alg be the special fiber of G alg

λ /Oλ. Then, G alg
λ is the general

fiber of G alg
λ /Oλ.

12



Lemma 3.18. Let χλ : GF → Zl ⊂ Oλ be the composition of the cyclotomic character

with the natural imbedding Zl ⊂ Oλ. Let l � 0 be such that λ|l be a prime of E which

splits in L.

(i) For any σ ∈ GF and all v1, v2 ∈ Tλ(A), we have

ψλ(σv1, σv2) = χλ(σ)ψλ(v1, v2).

(ii) For any B ∈ R⊗O0
E
Oλ and all v1, v2 ∈ Tλ(A), we have

ψλ(Bv1, v2) = ψλ(v1,
tBv2).

Proof. (i) follows by [6, Lemma 2.3] or [2, Lemma 4.7] which concern pairing φλ

and by (3.9) and definition 3.8, because the GF -action commutes with the action of R

on Tl(A). Indeed, since ψλ(v, w) = φλ(Jv, w) and J commutes with the GF -action by

assumption, we get immediately statement (i) for ψλ. Part (ii) follows by Proposition

3.16.

By [10, Theorem 3] and [2, Lemma 4.17] GF acts on both Vλ(A) and A[λ] semi-simply

and G alg
λ and G(λ) alg are reductive algebraic groups. Hence G alg

λ is a reductive group

scheme over Oλ for l � 0 by [18, Prop. 1.3] (cf. [36, Theorem 1]).

Let

t =

�
1 0

0 −1

�
, u =

�
0 1

1 0

�
.

Let f = (1+u)/2, X = f Tλ(A) and Y = (1−f) Tλ(A). Put X = X⊗Oλ
Eλ, Y = Y⊗Oλ

Eλ,

X = X⊗Oλ
kλ and Y = Y⊗Oλ

kλ. Because tft = 1 − f, the matrix t gives an Oλ[GF ]-

isomorphism between X and Y , hence it gives an Eλ[GF ]-isomorphism between X and Y

and a kλ[GF ]-isomorphism between X and Y . Using the computations of endomorphism

algebras by [10, Satz 4] and [37, Corollary 5.4.5], we get:

(3.19) EndOλ[GF ] (X ) = Oλ ,

(3.20) EndEλ[GF ] (X) = Eλ ,

(3.21) Endkλ[GF ] (X ) = kλ .

So the representations of GF on the spaces X and Y (resp. X and Y ) are absolutely

irreducible over Eλ (resp. over kλ). Hence, the bilinear form ψ0
λ (resp. ψλ) when restricted

to either of the spaces X, Y (resp. spaces X and Y) is non-degenerate or isotropic.
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Lemma 3.22. The modules X and Y are orthogonal with respect to ψλ. Consequently,

the modules X and Y (resp. X and Y) are orthogonal with respect to ψ0
λ (resp. ψλ).

Proof. Note that uf = f and u(1 − f) = −(1 − f). Hence for every v ∈ X and for

every w ∈ Y , we get uv = v and uw = −w. Hence

ψλ(v, w) = ψλ(uv, w) = ψλ(v, utw) = ψλ(v, uw) = ψλ(v,−w) = −ψλ(v, w).

Hence ψλ(v, w) = 0 for every v ∈ X and for every w ∈ Y .

Theorem 3.23. Let A be of type III and l � 0. Then there is a free Oλ-module Wλ(A)

of rank 2h with the following properties.

(i) Tλ(A) ∼= Wλ(A)⊕Wλ(A) as Oλ[GF ]-modules.

(ii) There exists a symmetric, non-degenerate pairing ψλ : Wλ(A)×Wλ(A) → Oλ.

(ii’) For Wλ(A) = Wλ(A)⊗Oλ
Eλ, the induced symmetric pairing ψ0

λ : Wλ(A)×Wλ(A) →

Eλ is non-degenerate. The GF module Wλ(A) is absolutely irreducible.

(ii”) For Wλ(A) = Wλ(A)⊗Oλ
kλ, the induced symmetric pairing ψλ : Wλ(A)×Wλ(A) →

kλ is non-degenerate. The GF module Wλ(A) is absolutely irreducible.

Pairings (ii), (ii’) and (ii”) are compatible with the GF -action in the same way as the

pairing in Lemma 3.18 (i).

Proof. (i) follows by taking Wλ(A) = X . We get (ii) by restricting ψλ to X . To

finish the proof, observe that the form (3.2) is non-degenerate, so ψl = ψl ⊗ Fl is non-

degenerate for any abelian variety with polarization degree prime to l. By [2, Lemma 3.2],

the form ψλ is non-degenerate for all λ, hence the forms ψ0
λ and ψλ are simultaneously

non-degenerate. Hence (ii’) and (ii”) follow by (ii), (3.20) and (3.21) and also by Remark

3.17 and Lemma 3.22.

4 Representations associated with Abelian varieties

of type III

Let A/F be an abelian variety of type III. The field of definition F is such that G alg
l is a

connected algebraic group. Let us put Tλ = Wλ(A), Vλ = Tλ ⊗Oλ
Eλ and Aλ = Vλ/Tλ.

With this notation, by Theorem 3.23 we have Vl(A) =
�

λ|l

�
Vλ ⊕ Vλ

�
. We put

(4.1) Vl =
�

λ|l

Vλ.
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Let VΦλ
be the space Vλ considered over Ql. Then there is the following equality of Ql-

vector spaces:

(4.2) Vl =
�

λ|l

VΦλ
.

The l-adic representation

(4.3) ρ0
l : GF −→ GL(Vl(A))

induces the following representations (note that we use the notation ρ0
l for both represen-

tations (4.4) and (4.5)(cf. [2, Remark 5.13]):

(4.4) ρ0
l : GF −→ GL(Vl),

(4.5) ρ0
λ : GF −→ GL(Vλ).

Consider the representation ρΦλ
defined in [2, p. 54]:

(4.6) ρΦλ
: GF −→ GL(VΦλ

).

By Theorem 3.23 (cf. [2, Remark 5.13]), the group scheme G alg
l (resp. G alg

λ ) is naturally

isomorphic to the Zariski closure in GLVl
(resp. GLVλ

) of the image of the representation

ρl of (4.4) (resp. ρλ of (4.5)). Let G alg
Φλ

denote the Zariski closure in GLVΦλ
of the image of

the representation ρΦλ
of (4.6). Let gl = Lie(G alg

l ), gλ = Lie(G alg
λ ) and gΦλ

= Lie(G alg
Φλ

).

By definition G alg
l ⊂

�
λ|lG

alg
Φλ

so gl ⊂
�

λ|lgΦλ
. This implies:

(4.7) (G alg
l ) � ⊂

�
λ|l

(G alg
Φλ

) �,

(4.8) gss
l ⊂

�
λ|l

gss
Φλ

.

In the remainder of this section, we compute the Lie algebras corresponding to rep-

resentations we consider. Some results that we proved in [2] for abelian varieties of type

I and II work as well for abelian varieties of type III. Since the detailed proofs of these

results were given in [2], we will merely reformulate corresponding results for abelian

varieties of type III. For example the proof of Lemma 4.9 (resp. Lemma 4.10) below is

essentially the same as the proof of Lemma 5.20 (resp. Lemma 5.22) of [2].
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Lemma 4.9. The natural map of Lie algebras

gss
l → gss

Φλ

is surjective.

Lemma 4.10. Let A/F be an abelian variety over F of type III such that EndF (A) =

EndF (A). Then

Endgλ
(Vλ) ∼= EndEλ[GF ] (Vλ) ∼= Eλ ,

EndgΦλ
(VΦλ

) ∼= EndQl[GF ] (VΦλ
) ∼= Eλ .

We define the subgroups of GL(Vλ) by

GO(Vλ,ψλ) = {A ∈ GLVλ
: ψλ(Av1, Av2) = cλ(A)ψλ(v1, v2) for all v1, v2 ∈ Vλ} ,

O(Vλ,ψλ) = {A ∈ GLVλ
: ψλ(Av1, Av2) = ψλ(v1, v2) for all v1, v2 ∈ Vλ} .

Denote by SO(Vλ,ψλ) the connected component of the identity in O(Vλ,ψλ). By Lemma 3.18,

we see that ρλ(GF ) ⊂ GO(Vλ,ψλ) and therefore G alg
λ ⊂ GO(Vλ,ψλ). This of course implies

that (G alg
λ ) � ⊂ O(Vλ,ψλ). Extending the base field F , if necessary, one can assume that G alg

λ

and hence (G alg
λ ) � are connected (cf. [5, Proposition 3.6]). This gives the inclusions

(4.11) (G alg
λ ) � ⊂ SO(Vλ,ψλ)

and

(4.12) gss
λ ⊂ so(Vλ,ψλ).

From now on, in this section we assume that A is an abelian variety of class B.

Lemma 4.13. The equality gss
λ = so(Vλ,ψλ) holds.

Proof. The proof is similar to the proofs of [1, Lemma 3.2] and [2, Lemma 5.33].

Since type III is more exotic than types I and II, we will give here a complete proof.

Observe that the minuscule conjecture for the λ-adic representations ρF : GF → GL(Vλ)

holds. Namely by [P, Corollary 5.11], we know that gss
l ⊗ Q̄l may only have simple factors

of types A, B, C or D with minuscule weights. By Lemma 4.9, the natural map of Lie

algebras

(4.14) gss
l → gss

Φλ

is surjective. Hence by the semisimplicity of gss
l the simple factors of gss

Φλ
⊗ Q̄l are also

of types A, B, C or D with minuscule weights. By [2, Proposition 2.12] and [2, Lemmas

2.21, 2.22, 2.23], there is an isomorphism of Ql-Lie algebras

(4.15) gss
Φλ
∼= REλ/Ql

gss
λ .
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The isomorphisms gss
Φλ
⊗Ql

Ql
∼= gss

λ ⊗Eλ
Eλ⊗Ql

Ql
∼=

�
Eλ�→Ql

gss
λ ⊗Eλ

Ql imply that

simple factors of gss
λ ⊗Eλ

Ql are of types A, B, C or D with minuscule weights. Put

V̄λ = Vλ ⊗Ql. We have the decomposition

V̄λ = E(ω1)⊗Ql
· · ·⊗Ql

E(ωr),

where E(ωi), for all 1 ≤ i ≤ r, are the irreducible Lie algebra modules of the highest

weight ωi. The modules E(ωi) correspond to simple Lie algebras gi, which are summands

of the image

Im
�
gss

λ ⊗Ql → so2h(V λ)
�

= g1 ⊕ · · ·⊕ gr.

By [4, Chap.VIII Proposition 12], E(ωi) are symplectic or orthogonal. By [23, Corollary

5.11], all simple factors of gss
λ ⊗ Ql are of classical type A, B, C and D, and the weights

ω1, . . . ,ωr are minuscule. All minuscule weights and dimensions of representations are

listed in [4, Chap. VIII, Tables 1 and 2] and in [14, p.72]. Since h is odd, the investigation

of the tables of minuscule weights and the dimensions of associated representations shows

that the tensor product can contain only one factor which is orthogonal and is either

of type Dn, weight w1 and dimension 2n or of type A4k+3, weight w2k+2 and dimension�
4k+4
2k+2

�
. Hence Vλ is an irreducible gss

λ -module and we get

gss
λ = so(Vλ,ψλ).

The following lemma has the proof analogous to that of [2, Lemma 5.35].

Lemma 4.16. There are natural isomorphisms of Ql-algebras.

Endgss
Φλ

(VΦλ
) ∼= Endgss

λ
(Vλ) ∼= Eλ

Proposition 4.17. There is an equality of Lie algebras :

(4.18) gss
l =

�

λ|l

gss
Φλ

Proof. By use of (4.8) and Lemma 4.16, the proof is the same as that of [2, Propo-

sition 5.39].

Theorem 4.19. There is an equality of group schemes over Ql :

(4.20) (G alg
l ) � =

�

λ|l

REλ/Ql
SO(Vλ,ψλ).
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Proof. By [2, Proposition 2.12], we get:

(4.21) G alg
Φλ

∼= REλ/Ql
G alg

λ ⊂ REλ/Ql
GO(Vλ,ψλ).

Hence it follows from [2, Lemma 2.23], that

(4.22) (G alg
Φλ

) � ⊂ REλ/Ql
SO(Vλ,ψλ).

By (4.7) and (4.22), we have a closed immersion of two connected group schemes over

Ql :

(G alg
l ) � ⊂

�

λ|l

REλ/Ql
SO(Vλ,ψλ).

But this imbedding induces the Lie algebra isomorphism of Proposition 4.17, hence the

theorem follows by Prop. 4.17 and [13, Theorem on p.87 and Proposition on p.110].

5 Mumford-Tate conjecture for abelian varieties of

type III

Choose an imbedding of F into the field of complex numbers C. Define V := H1(A(C), Q)

to be the singular cohomology group with rational coefficients. Consider the Hodge de-

composition

V ⊗Q C = H1,0
⊕H0,1,

where Hp,q = Hp(A; Ωq
A/C) and Hp,q = Hq,p. Observe that Hp,q are invariant subspaces

with respect to D = EndF (A) ⊗ Q action on V ⊗Q C. Hence, in particular, Hp,q are

E-vector spaces. Tensoring (3.1) with Q, we get the Q-bilinear nondegenerate alternating

form κ0 := κ ⊗Z Q : V × V → Q. Abusing notation sligthly, we will denote by κ the

form κ0 i.e., we have the form:

κ : V × V → Q.

Define the cocharacter

µ∞ : Gm(C) → GL(V ⊗Q C) = GL2g(C)

such that, for any z ∈ C
×, the automorphism µ∞(z) is the multiplication by z on H1,0

and the identity on H0,1.

Definition 5.1. The Mumford-Tate group of the abelian variety A/F is the smallest

algebraic subgroup MT (A) ⊂ GL2g, defined over Q, such that MT (A)(C) contains the

image of µ∞. The Hodge group H(A) is by definition the connected component of the

identity in MT (A) ∩ SLV .
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MT (A) is a reductive group (see [8], [11]). Since by definition

µ∞(C×) ⊂ GSp(V, κ)(C),

it follows that the group MT (A) is a subgroup of the group of symplectic similitudes

GSp(V, κ) and that

(5.2) H(A) ⊂ Sp(V, κ).

Definition 5.3. The algebraic group L(A) = C◦

D(Sp(V, κ)), which is the connected

component of the identity of the centralizer of D in Sp(V, κ) (cf. Remark 5.4), is called the

Lefschetz group of an abelian variety A. Note that the group L(A) does not depend on

the form κ (cf. [26]).

Before investigating Mumford-Tate group further, let us make two general remarks con-

cerning centralizers of group schemes which we will often use.

Remark 5.4. Let B1 ⊂ B2 be two commutative rings with identity. Let Λ be a free,

finitely generated B1-module such that it is also an R-module for a B1-algebra R. Let

G be a B1-group subscheme of GLΛ. Then CR(G) will denote the centralizer of R in

G. The symbol C◦

R(G) will denote the connected component of identity in CR(G). Let

β : Λ × Λ → B1 be a bilinear form and let G(Λ,β) ⊂ GLΛ be the subscheme of GLΛ of

the isometries with respect to the form β. Then we check that CR(G(Λ,β)) ⊗B1 B2
∼=

CR⊗B1B2(G(Λ⊗B1B2, β⊗B1B2)).

Remark 5.5. Let L/K be a finite separable field extension. Let V be a finite di-

mensional vector space and let φ : V × V → L be a nondegenerate bilinear form. As-

sume that G(V,φ) is a connected algebraic group. Then there is a natural isomorphism

RL/KG(V,φ)
∼= C◦

L(G(V, TrL/Kφ)). Let B ⊂ K be a subring of K, integrally closed in K, and

let C ⊂ L be the integral closure of B in L. Assume that C is a free B-module which has

a basis over B, such that the dual basis with respect to TrL/K is also in C. let T be a

finitely generated free C-module. Let φ : T × T → C be a nondegenerate bilinear form.

Assume that G(T,φ) is a connected algebraic group scheme over C. Then there is a natural

isomorphism RC/BG(T,φ)
∼= C◦

C(G(T, TrC/Bφ)) of group schemes over B.

By [8, Sublemma 4.7], there is a unique E-bilinear, nondegenerate, alternating pairing

φ : V × V → E

such that TrE/Q(φ) = κ. Since the actions of H(A) and L(A) on V commute with the

D-structure, and since RE/Q(Sp(V, φ)) = CE(Sp(V, κ)), by Remark 5.5, we get

(5.6) H(A) ⊂ L(A) = C◦

D(RE/Q(Sp(V, φ))) ⊂ CD(RE/Q(Sp(V, φ))).
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If L/Q is a field extension of Q, we put

MT (A)L := MT (A)⊗Q L, H(A)L := H(A)⊗Q L, L(A)L := L(A)⊗Q L.

Conjecture 5.7. (Mumford-Tate, cf. [28, C.3.1]) If A/F is an abelian variety over

a number field F , then for any prime number l

(5.8) (G alg
l )◦ = MT (A)Ql

,

where (G alg
l )◦ denotes the connected component of the identity.

Theorem 5.8. (Deligne [8, I, Prop. 6.2]) If A/F is an abelian variety over a number

field F and l is a prime number, then

(5.10) (G alg
l )◦ ⊂ MT (A)Ql

.

Theorem 5.11. The Mumford-Tate conjecture is true for abelian varieties of class B.

Proof. It is enough to verify (5.8) for a single prime l by [18, Theorem 4.3]. Hence

we can use the equality (4.20) by taking l big enough. The proof goes similarly to that of

[2, Theorem 7.12]. The important step is the transition (see 5.15 below) from symplectic

forms to the symmetric forms to which we can apply the results of previous sections of

this paper. It is known that H(A) is semisimple (cf. [11, Proposition B.63]) and the

center of MT (A) is Gm (cf. [11, Corollary B.59]). In addition MT (A) = GmH(A), and

hence

(5.12) (MT (A)Ql
) � = (H(A)Ql

) � = H(A)Ql
.

By (4.20), (5.9) and (5.12), we have

(5.13)
�

λ|l

REλ/Ql
(SO(Vλ,ψ0

λ)) ⊂ H(A)Ql
.

By (5.6) and Remark 5.5, we have

(5.14) H(A)Ql
⊂ L(A)Ql

⊂ CD(RE/Q(Sp(V, φ)))⊗Q Ql
∼=

�

λ|l

CDλ
(REλ/Ql

(Sp(Vλ(A), φ0
λ))).

where κl = κ ⊗Q Ql, and κl is essentially the Weil pairing (cf. [19, diagram on p. 133]).

By definitions of the forms φλ and ψλ, we have

(5.15) CDλ
(Sp(Vλ(A), TrEλ/Ql

φ0
λ)) ∼= CDλ

(SO(Vλ(A), TrEλ/Ql
ψ0

λ)).
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So by (5.13), (5.14) and (5.15), we have

(5.16)
�

λ|l

REλ/Ql
(SO(Vλ,ψ0

λ)) ⊂ H(A)Ql
⊂ L(A)Ql

⊂

�

λ|l

CDλ
(REλ/Ql

(SO(Vλ(A), ψ0
λ))).

Observe that Vλ(A) ∼= Vλ⊕Vλ by Theorem 3.23. Moreover Dλ = M2,2(Eλ) by assumption

on λ. Hence evaluating left and right ends of the inclusions (5.16) on the Ql-points, we

get equality of the both ends with

�

λ|l

�

Eλ�→Ql

(SO(Vλ,ψλ))(Ql)

which is an irreducible algebraic variety over Ql. Then we use [12, Propositions II,2.6 and

II,4.10] in order to conclude that the groups H(A)Ql
and L(A)Ql

as well as the groups

over Ql �

λ|l

CDλ
(REλ/Ql

(SO(Vλ(A), ψ0
λ))) =

�

λ|l

CDλ
(SO(Vλ(A), TrEλ/Ql

ψ0
λ)))

are connected. Then (5.16) gives the following equalities by use of Remark 5.5:

(5.17)
�

λ|l

REλ/Ql
(SO(Vλ,ψ0

λ)) = H(A)Ql
= L(A)Ql

=
�

λ|l

CDλ
(SO(Vλ(A), TrEλ/Ql

ψ0
λ))).

The equalities (4.20), (5.17) and [3, p.702, Corollary 1] give

(5.18) MT (A)Ql
= GmH(A)Ql

= Gm(G alg
l ) � ⊂ G alg

l .

The theorem follows by (5.10) and (5.18).

Corollary 5.19. If A is an abelian variety of class B, then

(5.20) H(A) = L(A) = C◦

D(RE/Q(Sp(V, φ))) = CD(RE/Q(Sp(V, φ))).

Proof. By (5.6) and (5.17) we get equality of Lie algebras

Lie H(A) = Lie L(A) = Lie C◦

D(RE/Q(Sp(V, φ))) = Lie CD(RE/Q(Sp(V, φ)))

of connected group schemes. Hence (5.20) follows by (5.6) and [13, Theorem p.87].

Conjecture 5.21 ( Lang ). Let A be an abelian variety over a number field F. Then

for l � 0 the group ρl(GF ) contains the group of all homotheties in GLTl(A)(Zl).

Theorem 5.22. (Wintenberger [36, p.5, Corollary 1]) Let A be an abelian variety over

a number field F . The Lang conjecture holds for A if the Mumford-Tate conjecture holds

for A or if dim A < 5.
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Theorem 5.23. The Lang’s conjecture is true for abelian varieties of class B.

Proof. It follows by Theorems 5.11 and 5.22.

Consider again the bilinear form φ : V × V → E.

We have:

H1(A(C); C) ∼= V ⊗Q C ∼=
�

σ:E�→C
V ⊗E,σ C.

Put Vσ(A) = V ⊗E,σ C and let φσ be the form

φ⊗E,σ C : Vσ(A)⊗C Vσ(A) → C.

Since A is of type III, there are isomorphisms D⊗E C ∼= D⊗E R⊗RC ∼= H⊗RC ∼= M2,2(C).

Define the bilinear form

(5.24) ψσ : Vσ(A)× Vσ(A) → C, by ψσ(v1, v2) := φσ(Jv1, v2).

Lemma 5.25. If A is simple abelian variety of type III, then for each σ : E �→ C there

is a C-vector space Wσ(A) of dimension g/e = 4 dimA/[D : Q] such that

(i) Vσ(A) ∼= Wσ(A)⊕Wσ(A),

(ii) the restriction of ψσ to Wσ(A) gives a nondegenerate, symmetric pairing

ψσ : Wσ(A)×Wσ(A) → C.

Proof. The idea of the proof is the same as that of Theorem 3.23. Namely, using

some arguments that we used in the proof of Proposition 3.18, we can prove as follows.

ψσ(Bv1, v2) = ψσ(v1, B
tv2) for every B ∈ M2,2(C).

Let t, u, f, e ∈ M2,2(C) be the matrices defined in Section 3. Define Wσ(A) := fVσ(A).

We get the proof by repeating the argument of Lemma 3.22.

Corollary 5.26. If A is an abelian variety of class B, then

(5.27) H(A)C = L(A)C =
�

σ:E�→C
SO(Wσ(A), ψσ).

Proof. With use of Lemma 5.25 and the argument similar to the proof of formula

(5.17), we obtain

C◦

D(RE/Q(Sp(V, φ)))⊗Q C ∼=
�

σE�→C
SO(Wσ(A), ψσ).

Hence (5.27) follows by (5.20).
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6 Images of the Galois representations ρl and ρl

In this section we explicitly compute the images of the l-adic representations induced by

the action of the absolute Galois group on the Tate module of abelian varieties of type

III .

By Theorem 3.23 (i) the representation ρλ induces naturally the representation (de-

noted in the same way)

ρλ : GF → GL(Tλ).

Moreover, by Theorem 3.23 (ii), we have

(6.1) ρl(GF ) ⊂
�

λ|l

GO(Tλ,ψλ)(Oλ) =
�

λ|l

ROλ/Zl
(GO(Tλ,ψλ))(Zl).

By (6.1) there is a closed immersion

(6.2) G
alg
l ⊂

�

λ|l

ROλ/Zl
(GO(Tλ,ψλ)),

which implies

(6.3) ρl(GF ) ⊂ G
alg
l (Zl) ⊂

�

λ|l

ROλ/Zl
(GO(Tλ,ψλ))(Zl).

Since l is unramified in E, there is a natural isomorphism ROλ/Zl
(.)⊗Zl

Fl
∼= Rkλ/Fl

(.) To

see this isomorphism in an elementary way, we can use [2, Remark 2.8] and a modification

of [2, Lemma 2.1] to the case of ROλ/Zl
. Changing base in (6.2), we get a natural closed

immersion of group schemes

(6.4) G(l) alg
⊂

�

λ|l

Rkλ/Fl
(GO(Aλ[λ], ψλ)),

where Aλ[λ] = Wλ(A) and A[λ] ∼= Aλ[λ]⊕Aλ[λ] (cf. Theorem 3.23 (i), (ii��)). Hence, by

reducing mod l in (6.3), we get

(6.5) ρl(GF ) ⊂ G(l) alg(Fl) ⊂
�

λ|l

Rkλ/Fl
(GO(Aλ[λ], ψλ))(Fl).

Because extracting derived subgroup commutes with base change (see [2, Remark 6.8]),

and because (G alg
l ) � (resp. (G(l) alg) � are connected, by (6.2) (resp. by (6.4)) we get

(6.6) (G alg
l ) � ⊂

�

λ|l

ROλ/Zl
(SO(Tλ,ψλ)) ,

(6.7) (G(l) alg) � ⊂
�

λ|l

Rkλ/Fl
(SO(Aλ[λ], ψλ)) .
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Proposition 6.8. Let A/F be an abelian variety of class B. Then for all l � 0, we

have the equalitiy of ranks of group schemes over Fl

(6.9) rank (G(l) alg) � = rank
�

λ|l

Rkλ/Fl
(SO(Aλ[λ], ψλ)) .

Proof. Using (6.7) and Theorem 4.19 we apply [2, Lemma 6.1] to finish the proof in

the same way as that of [2, Theorem 6.6].

Theorem 6.10. Let A/F be an abelian variety of class B. Then for all l � 0, we have

the equality of group schemes

(6.11) (G(l) alg) � =
�

λ|l

Rkλ/Fl
(SO(Aλ[λ], ψλ)) .

Proof. Projecting onto the λ-component in (6.7), we obtain the representation

(6.12) ρ
Φλ

: (G(l) alg) � → Rkλ/Fl
(SO(Aλ[λ], ψλ)) .

This gives the representation

(6.13) (G(l) alg) � ⊗Fl
kλ → SO(Aλ[λ], ψλ) .

By (3.21) we have the natural isomorphism

(6.14) (Endkλ[GF ] Aλ[λ])⊗kλ
L ∼= L

for any field extension L/kλ. Hence, by (6.13), (6.14) and the Schur’s Lemma, it follows

that

ρ
Φλ

(Z((G(l) alg) � ⊗Fl
kλ)) ⊂ k×λ IdAλ[λ].

Hence by (6.13)

ρ
Φλ

(Z((G(l) alg) � ⊗Fl
kλ)) ⊂ µ2,

which implies that

ρ
Φλ

(Z((G(l) alg) �)) ⊂ Rkλ/Fl
(µ2).

Hence

Z((G(l) alg) �) ⊂
�

λ|l

Rkλ/Fl
(µ2) ⊂ Z(

�

λ|l

Rkλ/Fl
(SO(Aλ[λ], ψλ))).

Since both groups (G(l) alg) � and
�

λ|l Rkλ/Fl
(SO(Aλ[λ], ψλ)) are reductive, the proof is fin-

ished in the same way as that of [1, Lemma 3.4].
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Remark 6.15. Let �G denote the universal cover for a semisimple group scheme G.

The existence of the universal cover for a semisimple group scheme over a field was proven

by Chevalley [7] (cf. [31]). In general, the existance of the universal cover for a semisimple

group scheme over a base scheme S follows from [9, Exposé XXV]. The universal cover is

compatible with the base change.

Let Spin(Tλ, ψλ), (resp. Spin(Vλ, ψλ), Spin(Aλ[λ], ψλ) ) denote the universal cover of the

group scheme SO(Tλ, ψλ), (resp. SO(Vλ, ψλ), SO(Aλ[λ], ψλ)). Consider the following, short

exact sequences of group schemes:

(6.16) 1 −−−→ µ2 −−−→ Spin(Tλ, ψλ)
πλ

−−−→ SO(Tλ, ψλ) −−−→ 1 ,

(6.17) 1 −−−→ µ2 −−−→ Spin(Vλ, ψλ)
πλ

−−−→ SO(Vλ, ψλ) −−−→ 1 ,

(6.18) 1 −−−→ µ2 −−−→ Spin(Aλ[λ], ψλ)
πλ

−−−→ SO(Aλ[λ], ψλ) −−−→ 1 .

The sequences (6.17) and (6.18) are obtained by base change from the sequence (6.16).

Evaluating the exact sequence (6.16) on Oλ-points (resp. (6.18) on kλ-points), we get

(6.19) SO(Tλ, ψλ)(Oλ) /πλ(Spin(Tλ, ψλ)(Oλ)) ∼= Z/2

(6.20) (resp. SO(Aλ[λ], ψλ)(kλ) /πλ(Spin(Aλ[λ], ψλ)(kλ)) ∼= Z/2 ).

Evaluating the exact sequence (6.17) on Eλ-points we get

(6.21) SO(Vλ, ψλ)(Eλ) /πλ(Spin(Vλ, ψλ)(Eλ)) ∼= Z/2⊕ Z/2.

Indeed, the theorem of Steinberg (cf. [16, Theorem 2.1]) gives H1(kλ, Spin(Aλ[λ], ψλ)) = 0

and the theorem of Kneser (cf. [16, Theorem 2.2]) gives H1(Eλ, Spin(Vλ, ψλ)) = 0. In

addition, by a theorem of Tits (cf. [22, Theorem 4.1] ), the natural map

H1(Oλ, Spin(Tλ, ψλ)) → H1(Eλ, Spin(Vλ, ψλ))

is an imbedding. Hence H1(Oλ, Spin(Tλ, ψλ)) = 0.

Lemma 6.22. (Integral Gram-Schmidt) Let (R,mR) be a local integral domain with

char R �= 2. Let k := R/mR be the residue field. Let T be a free finitely generated R-module

and let T := T ⊗R k. Consider a symmetric bilinear form

β : T × T → R
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such that the form

β := β ⊗R k : T × T → k

is nondegenerate. Assume that 1 + mR = (1 + mR)2. Then the map

SO(T, β)(R) → SO(T , β)(k)

is surjective.

Proof. The proof is an analogue of Gram-Schmidt algorithm.

Let G � := [G, G] denote the closure of the commutator subgroup for any profinite

group G.

Proposition 6.23. Let A/F be an abelian variety of class B. Then for l � 0, the

equalities

(6.24)
�

λ|l

πλ(Spin(Tλ, ψλ)(Oλ)) =
�

λ|l

SO(Tλ, ψλ)(Oλ)
�,

(6.25)
�

λ|l

πλ(Spin(Aλ[λ], ψλ)(kλ)) =
�

λ|l

SO(Aλ[λ], ψλ)(kλ)
�

hold.

Proof. Observe that
�

λ|l

SO(Aλ[λ], ψλ)(kλ)
�
⊂

�

λ|l

πλ(Spin(Aλ[λ], ψλ)(kλ))

by (6.20). On the other hand Spin(Aλ[λ], ψλ) (kλ) is a perfect group for all λ | l. So

�

λ|l

πλ(Spin(Aλ[λ], ψλ)(kλ)) ⊂

�

λ|l

SO(Aλ[λ], ψλ)(kλ)
�

by (6.18). Hence it proves (6.25). Consider the group scheme G := CR(Sp(Λ, κ)) over

Spec Z. Take a natural number N big enough so that, for l ≥ N, the condition l � 0

holds. Let GN := G ⊗Z Z[1/N ]. The scheme GN is semisimple. By [9, Exposé XXII,

Proposition 4.3.4], the scheme �GN is semisimple. Remark 5.4 and the universality of the

fiber product give

(6.26) CR(Sp(Λ, κ))⊗Z Zl = CR⊗ZZl
(Sp(Tl(A), κl)).

By definition of the forms ψλ, φλ we have

CRλ
(Sp(Tλ(A), TrOλ/Zl

φλ)) ∼= CRλ
(SO(Tλ(A), TrOλ/Zl

ψλ)).
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For l � 0, we have OE ⊗Z Zl ⊂ R ⊗Z Zl, OE ⊗Z Zl =
�

λ|l Oλ and R ⊗Z Zl =
�

λ|l Rλ.

Moreover, by (2.13) we have natural isomorphism of Rλ
∼= M2,2(Oλ) of Oλ-algebras, and

by Theorem 3.23 (i) we have a natural isomorphism Tλ(A) ∼= Tλ⊕Tλ of Oλ[GF ]-modules.

Hence by Remark 5.5, we get

CR⊗ZZl
(Sp(Tl(A), κl))

∼= CR⊗ZZl
(COE⊗ZZl

(Sp(Tl(A), κl)))

∼= CR⊗ZZl
(
�

λ|l

COλ
(Sp(Tλ(A), TrOλ/Zl

φλ)))

∼=
�

λ|l

CRλ
(Sp(Tλ(A), TrOλ/Zl

φλ))

∼=
�

λ|l

CRλ
(SO(Tλ(A), TrOλ/Zl

ψλ))

∼=
�

λ|l

COλ
(SO(Tλ, TrOλ/Zl

ψλ))

∼=
�

λ|l

ROλ/Zl
(SO(Tλ, ψλ)).

(6.27)

Isomorphisms (6.26) and (6.27) give GN ⊗Z[1/N ] Zl
∼=

�
λ|l ROλ/Zl

SO(Tλ, ψλ). Because the

universal cover is unique and commutes with base change, we get

�GN ⊗Z[ 1
N ] Zl

∼=
�

λ|l

ROλ/Zl
Spin(Tλ, ψλ).

Consider the commutative diagram

(6.28)

�
λ|l Spin(Tλ,ψλ)(Oλ)

rl
−−−→

�
λ|l Spin(Aλ[λ], ψλ)(kλ)

πl

� πl

�
�

λ|l SO(Tλ,ψλ)(Oλ)
rl

−−−→
�

λ|l SO(Aλ[λ], ψλ)(kλ),

where πl :=
�

λ|l πλ, πl :=
�

λ|l πλ and rl :=
�

λ|l rλ for the natural reduction maps rλ.

Note that

rl(π
−1
l (

�

λ|l

SO(Tλ, ψλ)(Oλ)
�)) =

�

λ|l

Spin(Aλ[λ], ψλ)(kλ).

Indeed, using Lemma 6.22 and (6.25), it follows from the diagram (6.28), because the

group
�

λ|l Spin(Aλ[λ], ψλ)(kλ) is perfect for l � 0 (cf. [31, Chap. 7, Corollary 2 (b)]) and,

by the theory of Chevalley’s groups [7] (cf. [31]), the kernel of the map πl is contained in

the center of
�

λ|l Spin(Aλ[λ], ψλ)(kλ). Hence, by [17, Proposition 2.6], we get
�

λ|l

Spin(Tλ, ψλ)(Oλ) = π−1
l (

�

λ|l

SO(Tλ, ψλ)(Oλ)
�).
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Theorem 6.29. Let A/F be an abelian variety of class B. Then for l � 0, there are

inclusions

(6.30)
�

λ|l

SO(Tλ, ψλ)(Oλ)
�

⊂ ρl(G
�

F ) ⊂

�

λ|l

SO(Tλ, ψλ)(Oλ),

(6.31)
�

λ|l

SO(Aλ[λ], ψλ)(kλ)
�

⊂ ρl(G
�

F ) ⊂

�

λ|l

SO(Aλ[λ], ψλ)(kλ),

where ρl is the representation ρl mod l.

Proof. By (6.5) and (6.11), we have

ρl(G
�

F ) = (ρl(GF )) � ⊂

�

λ|l

SO(Aλ[λ], ψλ)(kλ).

By a theorem of Serre (cf. [36, Theorem 4]), [36, Lemma 5] and Remark 6.15, we get
�

λ|l

πλ(Spin(Aλ[λ], ψλ)(kλ)) ⊂ ρl(GF ).

Since Spin(Aλ[λ], ψλ)(kλ) is a perfect group [31, chap. 7, Corollary 2 (b)], we have
�

λ|l

πλ(Spin(Aλ[λ], ψλ)(kλ)) ⊂ ρl(G
�

F ).

This proves (6.31). From (6.6) we know that the group ρl(G �

F ) = (ρl(GF )) � is a closed

subgroup of
�

λ|l SO(Tλ,ψλ)(Oλ). Consider the diagram (6.28). Since the finite group
�

λ|l Spin(Aλ[λ], ψλ)(kλ) is perfect, it follows by (6.25) and (6.31) that

πl(
�

λ|l

(Spin(Aλ[λ], ψλ)(kλ))) ⊂ rl((ρl(G
�

F )) �).

On the other hand it follows from (6.16) and (6.19) that

(ρl(G
�

F )) � ⊂ πl(
�

λ|l

(Spin(Tλ, ψλ)(Oλ))).

So we get the equality

rl(π
−1
l ((ρl(G

�

F )) �)) =
�

λ|l

Spin(Aλ[λ], ψλ)(kλ)

since
�

λ|l Spin(Aλ[λ], ψλ)(kλ) is perfect and the kernel of the map πl is contained in the

center of the group
�

λ|l Spin(Aλ[λ], ψλ)(kλ). So

π−1
l ((ρl(G

�

F )) �) = π−1
l (ρl(G

�

F )) =
�

λ|l

Spin(Tλ, ψλ)(Oλ)

by [17, Proposition 2.6]. It proves (6.30) in view of (6.24).
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Remark 6.30. Since
�

λ|l SO(Aλ[λ], ψλ)(kλ) � is a perfect group, the proof of 6.23 shows

that
�

λ|l SO(Tλ, ψλ)(Oλ) � is a perfect group with respect to the operation of taking com-

mutator and then closure in a profinite group.

Theorem 6.31. If A is an abelian variety of class B, then the equalities

(6.32) ρl(G
� �

F ) =
�

λ|l

SO(Tλ, ψλ)(Oλ)
�,

(6.33) ρl(G
� �

F ) =
�

λ|l

SO(Aλ[λ], ψλ)(kλ)
�

hold for l � 0.

Proof. It follows by (6.19), (6.20), Theorem 6.29 and Remark 6.30.

7 Open image property of ρl

Consider the group scheme CR(Sp(Λ, κ)) over Spec Z. Since CR(Sp(Λ, κ))⊗ZQ = CD(Sp(V, κ0))

(see Remark 5.4), there is an open imbedding in the l-adic topology

(7.1) CR(Sp(Λ, κ))(Zl) ⊂ CD(Sp(V, κ0))(Ql).

Theorem 7.2. Let A be an abelian variety of class B and let r(l) be the number of

primes over l in OE. Then

(i) ρl(GF ) is open in CR(GSp(Λ, κ))(Zl) for every prime number l,

(ii) ρl(G �

F ) has the index dividing 2r(l)
in CR(Sp(Λ, κ))(Zl) for l � 0,

(iii) ρl(G � �

F ) = CR(Sp(Λ, κ))(Zl) � for l � 0.

Proof. The group GSp(Λ, κ)(Zl) is generated by Sp(Λ, κ)(Zl) and a subgroup which,

in the Frobenius basis of Λ, has the form

{

�
aIg 0

0 Ig

�
; a ∈ Zl

×
}.

The group Z
×

l Sp(Λ, κ)(Zl) has index 2 (resp. index 4) in GSp(Λ, κ)(Zl), for l > 2 (resp. for

l = 2). By [3, Corollary 1], there is an open subgroup U ⊂ Z
×

l such that U ⊂ ρl(GF ).
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Hence U CR(Sp(Λ, κ))(Zl) = CR(U Sp(Λ, κ)(Zl)) is an open subgroup of CR(GSp(Λ, κ))(Zl) =

CR(GSp(Λ, κ)(Zl)). By [3, Theorem 1], the group ρl(GF ) is open in G alg
l (Ql). By Theorem

5.11 and Corollary 5.19

U CR(Sp(Λ, κ))(Zl)

⊂ Q
×

l CD(Sp(V, κ))(Ql) = Gm(Ql)H(A)(Ql)

⊂ MT (A)(Ql) = G alg
l (Ql).

(7.3)

Hence, U CR(Sp(Λ, κ))(Zl)∩ρl(GF ) is open in U CR(Sp(Λ, κ))(Zl) and we get that ρl(GF ) is

open in CR(GSp(Λ, κ))(Zl). Moreover, by (6.26) and (6.27), we have a natural isomorphism

(7.4) CR(Sp(Λ, κ))(Zl) ∼=
�

λ|l

SO(Tλ, ψλ)(Oλ)

for l � 0. Hence from (6.19), (6.24) and (6.30), it follows that the subgroup ρl(G �

F ) is of

index dividing 2r(l) in the group CR(Sp(Λ, κ))(Zl).

Theorem 7.5. If A is an abelian variety of class B, then for every prime number l,

the group ρl(GF ) is open in the group G
alg

l (Zl) in the l-adic topology.

Proof. By Theorem 7.2, the group ρl(GF ) is open in CR⊗ZZl
(GSp(Tl(A), κl))(Zl) in the

l-adic topology, so ρl(GF ) has a finite index in the group CR⊗ZZl
(GSp(Tl(A), κl))(Zl). By

the definition of G alg
l , we have:

ρl(GF ) ⊂ G
alg
l (Zl) ⊂ CR⊗ZZl

(GSp(Tl(A), κl))(Zl).

Hence, ρl(GF ) has a finite index in G alg
l (Zl), and the claim follows since

CR⊗ZZl
(GSp(Tl(A), κl))(Zl) is a profinite group.
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[3] F. A. Bogomolov, Sur l’algébricité des représentations l-adiques, C. R. Acad. Sci.

Paris, Sér. A-B, 290 (1980), A701–A703.

[4] N. Bourbaki, Groupes et algèbres de Lie, Hermann 1975.
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