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We say a field K has property (AIR) if rk(A(K)) = ∞ for every non-zero
abelian variety A/K.

Theorem 0.1. Here are a few examples of (AIR) fields. The (AIR) property is
proved with various different methods.

• (Mattuck): Every finite extension E/Qp has property (AIR)

• well-known: Every alg. closed field has property (AIR) except for the Fp.

• (Frey-Jarden): Let K be a finitely generated infinite field: For almost all
σ ∈ Gal(K) the field K(σ) has property (AIR).

Conjecture 0.2. (Larsen) Let K be a field which is not algebraic over a finite
field. If Gal(K) is a finitely generated profinite group, then K is an (AIR) field.

Conjecture 0.3. (Frey) For every number field K the field Kab is (AIR).

Definition 0.4. A field K is said to be ample if for every smooth curve C/K
we have C(K) = ∅ or |C(K)| =∞.

The above (AIR) fields (or conjectured (AIR) fields) are all ample (or conjectu-
red to be ample)!

Theorem 0.5. (Fehm-S.P.) Every ample field K which is not algebraic over
a finite field has the property (AIR).

We published this with the additional assumption that char(K) = 0 in 2010. We
had an “almost proof” of the full result already in 2011, but this “almost proof”
used a paper that turned out to contain gaps (and even a false statement). We
could not close the gaps, so we did not submit the “almost proof”, of course. In
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November 2019 Moshe Jarden brought a new paper of Damian Roessler to our
attention that contains a valid proof for the results we need. With the help of
that we could finish up the proof of the above theorem.

Example 0.6. The theorem gives new examples of (AIR) fields.

• For every Henselian local domain R the quotient field K = Quot(R) is
ample (due to Pop), hence (AIR).

• For number field K and every finite set S of places and almost all σ ∈
Gal(K) the field KS,tot ∩K(σ) is ample (due to a result of Geyer-Jarden)
and hence (AIR).

The theorem relates a conjecture of Koenigsmann with the above conjecture of
Larsen.

Conjecture 0.7. (Koenigsmann) Let K be a field. If Gal(K) is finitely ge-
nerated, then K is ample.

Corollary 0.8. Koenigsmann’s conjecture implies Larsen’s conjecture.

1 The Mordell-Lang conjecture in dimension one

Theorem 1.1. (Mordell-Lang in dimension one) Let K/Fp be an algebrai-
cally closed field and A/K an abelian variety. Let C be a subcurve of A and let
Γ ⊂ A(K) be a subgroup of finite rank. If |C(K)∩Γ| =∞, then gC = 1 or C is
K/F-isotrivial (i.e. birational to a curve over Fp).

This is a special case of the following conjecture.

Conjecture 1.2. (Mordell-Lang conjecture) Let X be a subvariety of A. If
|C(K) ∩ Γ| =∞, then X is special. (A curve C on A is known to be special iff
it is isotrivial or gC = 1.)

The proof of the proposition combines two important results: Ghioca-Moosa-
Scanlon reduction and a recent finiteness theorem of Roessler for curves.

Theorem 1.3. (Ghioca-Moosa-Scanlon reduction) A and X are defined
over a finitely generated subfield F/Fp of K and in the proof of the Mordell-Lang
conjecture one may assume Γ ⊂ A(Fins). Thus, in the proof of the Theorem 1.1
one can assume |C(Fins)| =∞.

The other important ingredient is the following result of Roessler.



Theorem 1.4. (Roessler, 2019) Let F/F0 be a finitely generated extension
of fields. Let C/F be a curve of genus ≥ 2. If |C(Fins)| =∞, then CF is F/F 0-
isotrivial.

In fact Roessler proved this in “only” in the case where F0 is algebraically

closed, trdeg(F/F0) = 1 and C is smooth projective. The latter assumption is

not necessary because C becomes birational to a smooth projective curve over
a finite inseparable extension of F . So assume C smooth and projective.

A marvellous argument of Arno shows that the other assumptions are not
necessary, too: Let F be the set of all intermediate fields F ′ of F/F 0 with
trdeg(F/F ′) = 1. Roessler’s theorem implies that CF is F/F ′-isotrivial for
every F ′ ∈ F . Hence, if c ∈ Mg(F ) is the point in the coarse moduli space
corresponding to C, then in fact

c ∈
⋂

F ′∈F

Mg(F ′) = Mg(
⋂

F ′∈F

F ′) = Mg(F 0).

Hence CF is F/F 0-isotrivial.

2 Proof of the main theorem

I shall now explain a proof of the following theorem, based on Theorem 1.1.

Theorem 2.1. Let F be a field which is not algebraic over a finite field. Let
A/F be an abelian variety. There exists a smooth curve CA/F of genus ≥ 2
such that CA(F ) 6= ∅ and such that for every extension F ′/F the implication

|CA(F ′)| =∞⇒ rk(A(F ′)) =∞

holds true. In particular, if F is ample, then rk(A(F )) =∞.

Replacing A by A×A we can assume dim(A) ≥ 2 . By Theorem 1.1 it is enough

to construct a curve C of genus ≥ 2 on A such that C(F ) contains a smooth
point and such that CF is not F/Fp-isotrivial.

Lemma 2.2. Let K/K0 be an extension of algebraically closed fields. Let f :
C → D be a finite morphism of smooth projective F -curves. If C is K/K0-
isotrivial, then D is K/K0-isotrivial.

Proof. We know that there is a sm. proj. curve C0/K0 such that C ∼= C0,K . Let
J0 = JC0

. Case gD = 0: Obvious.



Case gD = 1: Then D is an elliptic curve which is isogenous to an abelian
subvariety B of J0,K . Thus there exists an abelian subvariety B0 of J0 with
B = B0,K (cf. Conrad 2006, Milne’s article). So there is an isogeny B0,K → D.
The kernel of this isogeny is defined over K0 as well! (cf. Conrad 2006; subtle
fact using dim(B) = 1). Thus the isogeny induces an isomorphism of D with a
curve defined over K0.

Case gD ≥ 2: There exists an intermediate field L of K/K0, finitely generated
over K0, such that f, C,D are defined over L. Then C(L) = C0(L) ⊃ C0(K0)
is infinite, because K0 is alg. closed. As f : C(L) → D(L) has finite fibres,
D(L) is infinite as well. Roessler’s theorem (or Grauert-Manin) imply that D is
isotrivial.

Lemma 2.3. Let F/F0 be a transcendental extension of fields. Then there exists
a smooth projective curve D/F with gD ≥ 2, D(F ) 6= ∅ and such that DF is not
F/F 0-isotrivial

Sketch of Proof. Let j ∈ F be an element which is transcendental over F0. One
can write down an elliptic curve E with j-invariant j. This curve E is then not
isotrivial. Now write down D → E a sufficiently ramified cover that is purely
ramified at a F -rational pt. of E. Then D has an F -rational point, has genus
≥ 2 by Hurwitz formula and is non-isotrivial by the previous Lemma. �

Lemma 2.4. Let Y/F be a variety of dimension m and y ∈ Y (F ) a smooth
point. Then there exists an affine open neighbourhood Y ′ of y and an immersion
f : Y ′ → Am+1 with f(y) = 0.

Proof. By the smoothness there is an open affine neighbourhood and a étale
morphism f : Y ′ → Am sending y to 0. This is locally standard étale. Thus
there exists an open affine neighbourhood U = Spec(R) of 0 and after shrinking
Y ′ we have Y ′ = Spec(R[T ]/h(T )) and f is isomorphic to the canonical map.
Y ′ is obviously a subscheme of Am+1. �

Lemma 2.5. Let F/F0 be transcendental. Let X be an F -variety with n :=
dim(X) ≥ 2 and let x ∈ X(F ) be a smooth point of X. Then there exists a
closed subcurve C of X through x such that gC ≥ 2 and such that CF is not
F/F 0-isotrivial and such that C is smooth in x.

Proof. By Lemma 2.4 there is an open subscheme D′ of the curve D from Lemma
2.3 such that there exists a point d ∈ D′(F ) and an immersion D′ → A2 → An

sending d to 0. Moreover there is an open affine neighbourhood X ′ of x in X
and an étale X ′ → An sending x → 0. Let C ′ be the connected component of
D′ ×An X ′; its Zariski closure C in X will do the job. �

Applying the last lemma with F0 = Fp, X = A, x = 0 we get the missing piece
of information for the proof of the above Theorem 2.1.


