ISRAEL JOURNAL OF MATHEMATICS TBD (XXXX), 1-32
DOI: 10.1007,/s000000000000000000000000

LOCAL TO GLOBAL PRINCIPLES
FOR HOMOMORPHISMS OF ABELIAN SCHEMES

BY

WoiciEcH GAJDA

Faculty of Mathematics and Computer Sciences, Adam Mickiewicz University
Uniwersytetu Poznarskiego 4, 61-614 Poznan, Poland
e-mail: gajda@amu.edu.pl

AND
SEBASTIAN PETERSEN

Institut fir Mathematik, Universitit Kassel
Fachbereich 10, Wilhelmshéher Allee 73, 34-119 Kassel, Germany
e-matl: petersen@mathematik.uni-kassel.de

Dedicated to Moshe Jarden with admiration on the occasion of his 80th birthday

ABSTRACT

Let A and B be abelian varieties defined over the function field k(S) of a
smooth algebraic variety S/k. We establish criteria, in terms of restriction
maps to subvarieties of S, for existence of various important classes of
k(S)-homomorphisms from A to B, e.g., for existence of k(S)-isogenies.
Our main tools consist of Hilbertianity methods, Tate conjecture as proven
by Tate, Zarhin and Faltings, and of the minuscule weights conjecture of
Zarhin in the case when the base field is finite.
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1. Introduction

Let S be a smooth variety over a finitely generated field k& of arbitrary char-
acteristic. Let o/ and Z be S-abelian schemes with generic fibers A and B
(respectively) defined over the function field k£(S). In this paper we consider
existence of certain classes of k(S)-homomorphisms from A to B, e.g., k(5)-
isogenies, and provide local criteria in terms of restriction maps to subvarieties
of S. Furthermore, we study existence of abelian subvarieties of A in a similar
way. Our first main result is the following local to global principle.

THEOREM A (Thm. 4.5): Let S be a smooth variety over a finitely generated
field k. Let o/, % be abelian schemes over S with generic fibers A and B,
respectively. Let U be a dense open subscheme of S. Let m € {0,1,...,dim(5)}.
Assume that k is infinite or that m > 1. Let k € N.

(a) The following are equivalent:

(i) There exists a k(S)-isogeny (resp. surjective homomorphism,
resp. non-zero homomorphism, resp. homomorphism with k-di-
mensional kernel) A — B.

(ii) For every m-dimensional smooth connected subscheme T of U
there exists a k(T)-isogeny (resp. surjective homomorphism,
resp. non-zero homomorphism, resp. homomorphism with k-di-
mensional kernel) Ay — By, where Ap, By denote the generic
fibers of the base changed abelian schemes </ — T, 17 — T,
respectively (cf. Section 3).

(b) The following are equivalent:

(i) There exists a k(S)-isogeny (resp. surjective homomorphism,
resp. non-zero homomorphism, resp. homomorphism with k-di-
mensional kernel) Am — BW'

(ii) For every m-dimensional smooth connected subscheme T of U
there exists a m—isogeny (resp. surjective homomorphism,
resp. non-zero homomorphism, resp. homomorphism with k-di-

mensional kernel) ATW — BTW'

Ingredients of the proof of Theorem A include standard methods based on
the Tate conjecture (proven by Tate, Zarhin and Faltings cf. Theorem 2.3) and
some consequences of the Hilbert irreducibility theorem (cf. Lemma 4.1), which



Vol. TBD, XXXX HOMOMORPHISMS OF ABELIAN SCHEMES 3

were inspired by Drinfeld’s “conventional formulation of Hilbertianity” in [6,
Section A.1.] and by Section 2 of a recent paper of Cadoret and Tamagawa [4].
As a formal consequence we obtain:

COROLLARY B (Cor. 4.6): Let S be a smooth variety over a finitely generated
field k. Let &/ be an abelian scheme over S with generic fiber A. Let U be
a dense open subscheme of S. Let m € {0,1,...,dim(S)}. Assume that k is
infinite or that m > 1.

(a) The following are equivalent:
(i) A is not a simple k(S)-variety.
(ii) For every m-dimensional smooth connected subscheme T of U the
fiber Ar is not a simple k(T')-variety.
(b) The following are equivalent:
(i) Aggy is not a simple k(S)-variety.
(ii) For every m-dimensional smooth connected subscheme T of U the
fiber AT,W is not a simple k(T)-variety.
Our second main result is the following local to global principle for quadratic
isogeny twists of abelian varieties. We call an abelian variety B/k a quadratic
isogeny twist of an abelian variety A/k, if there exists a quadratic twist A’/k

of A and a K-isogeny B — A’ (cf. Section 2).

THEOREM C (Thm. 4.7): Let S be a smooth variety over a finitely generated
field k. Let «/,% be abelian schemes over S with generic fibers A and B
respectively. Let U be a dense open subscheme of S. Let m € {0,1,...,dim(S)}.
Assume that k is infinite or that m > 1. The following are equivalent:

(a) A is a quadratic isogeny twist of B
(b) For every m-dimensional smooth connected subscheme T of U the
abelian variety Ap is a quadratic isogeny twist of Br.

The implication (a)=-(b) holds true also in the case where k is finite and m = 0.

We remark, that results in Section 4 of the paper are a bit more general than
Theorem A, Corollary B and Theorem C in that they also cover the situation
where S is an arithmetic scheme, but we do not go into the details within this
introduction.

It is clear that in the above statements the case when k is a finite field
and m=0 can not be covered by the Hilbertianity methods. It constitutes a
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separate question which we address under two sets of additional assumptions.
If A and B do not have nontrivial endomorphisms geometrically, then we es-
tablish a global function field analogue (cf. Proposition 5.8 below) of Fité’s
result [9, Cor. 2.7] following its proof quite closely. By combining Proposi-
tion 5.8 with the Hilbertianity approach we augment Theorem C by the case k
finite and m=0.

THEOREM D (Cor. 5.9): Let S be a smooth variety over a finite field k. Let </, A
be abelian schemes over S with generic fibers A and B respectively. Let U be
a dense open subscheme of S. Assume that

The following are equivalent:

(a) A is a quadratic isogeny twist of B.
(b) For every closed point u of U the abelian variety A, is a quadratic
isogeny twist of B,,.

If abelian varieties A and B meet the so-called minuscule weights conjecture
of Zarhin (cf. condition MWC, Definition 5.1), then we apply a global function
field analogue (cf. Proposition 5.4) of a result of Khare and Larsen [13, Thm. 1]
and prove the following result. It completes part (b) of Theorem A in case
when £ is finite and m=0. We discuss the current status of Zarhin’s conjecture
in Remark 5.3. In particular, it holds true for ordinary abelian varieties over
global fields of positive characteristics.

THEOREM E (Thm. 5.6): Let S be a smooth variety over a finite field k.
Let o7, A be abelian schemes over S with generic fibers A and B respectively.
Assume that A satisfies MW C(A) and B satisfies MW C(B). The following

are equivalent:

(a) There exists a surjective k(S)-homomorphism (resp. k(S)-isogeny)

(b) For every closed point s € S there exists a surjective k(s)-homomor-

phism (resp. k(s)-isogeny)

AS,W — Bs,k(s)'
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STRUCTURE OF THE PAPER. In Sections 2 and 3 we gathered material which is
needed in the sequel including basic facts on: twists of abelian varieties, Galois
representations and abelian schemes. Section 4 is a central part of the paper. It
contains proofs of main results by Hilbertianity methods in the case when k is
an infinite field or m > 1. In the final section we discuss the remaining case of
k finite, m=0 and work under extra assumptions, either the minuscule weights
conjecture or trivial endomorphisms for generic fibers.

ACKNOWLEDGMENTS. The authors were supported by a research grant
UMO-2018/31/B/ST1/01474 of the National Centre of Sciences of Poland.
S. P. thanks the Mathematics Department at Adam Mickiewicz University in
Poznan for hospitality during research visits. We thank Jedrzej Garnek, Marc
Hindry and Bartosz Naskrecki for useful discussions on the topic of this paper.
Finally we want to thank the anonymous referee for a careful reading of the
manuscript and for valualble comments.

2. Preliminaries

NoTATION. For a field K we denote by K a separable closure of K. If E/K is
a Galois extension, we denote by Gal(E/K) its Galois group and define

Gal(K) := Gal(K /K).

A K-variety is a separated algebraic K-scheme which is reduced and irreducible.
A K-curve is a K-variety of dimension 1. For a scheme S and s € S we denote
by k(s) the residue field of s. Let n € Z. Then, as usual, we denote by S[n~!]
the open subscheme of S with underlying set {s € S : n € k(s)*} (where n is
viewed as an element of k(s) via the ring homomorphism Z — k(s)). We let L
be the set of all rational primes and define

L(S) := {¢ € L: S[¢~'] # 0}.

If S is reduced and irreducible we denote, following EGA, by R(S) the function
field of S. If S is a K-variety, we sometimes write K (S) instead of R(S). If T
is a finite free Z;-module, V = T ®7z, Q¢ and T" is a subgroup GLr(Z,), then we
denote by I'”2" the Zariski closure of I' inside the algebraic group GLy /Q; so
that I'42" is an algebraic group of Q,. If G is an algebraic group over Qy, then
we denote by G° the connected component of the identity element of G.
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TWISTS OF ABELIAN VARIETIES. Let K be a field and A and B abelian varieties
over K. Let E/K be a Galois extension. We call B an E/K-twist of A if there is
an E-isomorphism Ar — Bpg. In subsequent sections we are mainly interested
in the case E = K. We denote by Twistg/x(A) the set of all isomorphism
classes of E/K-twists of A and define Twist(A) := Twistz ;- (A). There are
natural operations p4 : Gal(K) — Autx(Ag) and pp : Gal(K) — Autx(Bg)
and an operation
Gal(K) x Homg(Ag, Bg) = Homg(Ag, Bg),
7f=pp(0)ofopalo)".
Now assume that B/K is an E/K-twist of A and choose an E-isomorphism
f:Ag — Bg. Then
¢:Gal(E/K) — Autg(A4gp),
o) =f1o"f
is a l-cocycle (i.e., £(on) = &(0) o 7&(n)) whose cohomology class does not
depend on the choice of f. Let

pp: Gal(E/K) — Autk (4g),
pp(o) = ftopglo)of
be the operation on A derived from pp via transport of structure via f. Then
an easy calculation shows that

(1) p5(0) = £(0)palo) Vo € Gal(E/K)
is simply the action p4 twisted by the 1-cocycle &. It is well-known that this
sets up a bijective map
Ep/k : Twistp x(A) = H' (Gal(E/K), Autg(Ag)).
There is a natural map
j: HY(Gal(E/K),{£lds}) = HY(Gal(E/K), Autp(Ag)).

For a quadratic character x € Hom(Gal(E/K),{£Ida}) we denote by A,
an E/K-twist of A corresponding to j(x) under Zg/x. We call B a quadratic
isogeny twist of A, if there exists a quadratic character

x € Hom(Gal(K /K),{£Ida})
and a K-isogeny
B — A,.
Sometimes we tacitly identify {£Id4} with pa(Q) = {£1}.
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Remark 2.1: Let A be an abelian variety over a finite field K. Then there is
a unique non-trivial quadratic character Gal(K) — {£Id4} and accordingly a
unique non-trivial quadratic twist of A. This is clear since Gal(K) = Z.

GALOIS REPRESENTATIONS. Let K be a field of characteristic p > 0 and A/K
an abelian variety. For a rational prime ¢ # p we denote by

PA: Gal(K) — GLW(A)(@g)

the corresponding f-adic Galois representation, where Ty(A) is the ¢-adic Tate
module of A and Vy(A)=T;(A)®z,Q¢. Then the Zariski closure pA7g(Gal(K))Z"”
of pa¢(Gal(K)) in GLy,(4) and its identity component (pa,¢(Gal(K))%*)° are
algebraic groups over Q.

If K is finite, then we define the L-series of A by

L(A/K,T) = det(Idy,ay — pa,«(Fr)T)

where Fr € Gal(K) is the Frobenius element. This characteristic polyno-
mial L(A/K,T) has integer coefficients and does not depend on the rational
prime £ # p by the Weil conjectures. We have the following elementary but
useful fact.

LEMMA 2.2: Let K be a field of characteristic p > 0 and ¢ a prime different
from p. Let A/K and B/K be abelian varieties. Let f : A — B be a homo-
morphism and let Vy(f) : Vi(A) — Vi(B) be the homomorphism of Qg-vector
spaces induced by f. Then:

(a) dimg, (im(V;(f))) = 2 dim(im(f)).

(b) dimg, (ker(Ve(f))) = 2 dim(ker(f).

(¢) f: A — B is an isogeny if and only if the map V;(f) is bijective. In

particular, we have pa ¢ = pp,¢ provided B is K-isogenous to A.

Proof. We note that Ty(A) = Hom(Qg/Z¢, A(K)). For the purpose of that
proof we put Ty(M) := Hom(Q/Z¢, M) for an arbitrariy abelian group M.
Let C = ker(f) and I = im(f). Then C° and I are abelian varieties. From the
exact sequence

0— Co(f) — C’(E) — C’(E)/C’O(E) —0
we derive an exact sequence

0 — Ty(C°(K)) — To(C(K)) = T,(C(K)/C°(K))
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because the functor Hom(Qy/Z, —) is left exact. But T;(C(K)/C°(K)) = 0
because the group C(K)/C°(K) is finite. Thus T,(C°(K)) = T,(C(K)). From
the exact sequence

(2) 0—C(K)— AK) = I(K)—0

we obtain an exact sequence 0 — Ty(C(K)) — Ty(A(K)) — Ti(I(K)), again
because the functor Hom(Qy/Z, —) is left exact. Using T;(C°(K)) = Tu(C(K))
and tensoring with Q, we see that we have an exact sequence

(3) 0= Ve(C°) = Vi(A) = Vi(I).

Let ¢ = dim(C), a = dim(A) and ¢ = dim(I). Then a = i + ¢ by (2).
Also dimg, (V¢(C)) = 2¢, dimg, (Ve(A)) = 2a and dimg, (Vz(I)) = 2i (cf. [15,
Remark 8.4]). The image of the right hand map of the exact sequence (3)
has dimension 2a — 2¢ = 24, too, hence Vy(A) — V(I) is surjective. By the
left exactness of Hom(Qg/Z¢, —) we also see that Vp(I) — V,(B) is injective.
Thus Vi (I) = im(V(f)) and Vo(C°) = ker(V(f)). It follows that

dimg, (ker(V(f)))=dimg, (V2(C?))=2 dim(C*)= 2 dim(C)=2 dim(ker(f)),

dimg, (im(Ve(f)))= dimg, (Ve (I))=2 dim(I)=2 dim(im(f)),
as desired. This finishes the proof of (a) and (b). For (¢) put b := dim(B) and
note that:

f is an isogeny < f is surjective with a finite kernel
< dim(ker(f))=0 and dim(im(f))=b
< dimg, (ker(V;(f)))=0 and dimg, (im(Vz(f)))=2b
< Vi(f) is bijective. |

There is the following celebrated result due to Faltings, Tate and Zarhin.

THEOREM 2.3 (cf. [7], [22], [23]): Let K be a finitely generated field of charac-
teristic p > 0 and A/K and B/K be abelian varieties.

(a) pa,e is semisimple for every rational prime ¢ # p.
(b) The natural homomorphism

Hompg (A, B) ® Zy — Homga (k) (Te(A), T¢(B))

is bijective.
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COROLLARY 2.4: Let K be a finitely generated field of characteristic p > 0
and A/K and B/K be abelian varieties. The following statements are equiva-
lent:

(a) There exists a K-isogeny f: A — B.
(b) There exists an isomorphism pa ¢ =pp ¢ of Qg-representations of Gal(K).

If K is finite, then conditions (a) and (b) are also equivalent to the following
condition:

(¢) L(A/K,T) = L(B/K,T).

Proof. The implication (a)=(b) is Lemma 2.2. The implication (b)=-(a) is
a consequence of Theorem 2.3, cf. [7, Korollar 2]. If K is finite, then the
equivalence (b)<(c) has been established by Tate [22, Theorem 1]. n

Remark 2.5: Let K be a finitely generated field of characteristic p > 0 and A/K
an abelian variety. Let x : Gal(K) — {£Ida} be a quadratic character. Then:

(a) pa,e =X ®pae.
(b) If K is finite and x is the (unique) non-trivial quadratic character
of Gal(K), then L(A,/K,T) = L(A/K,~T).

Proof. (a) is immediate from equation (1). Part (b) is an immediate conse-
quence thereof. |

LEMMA 2.6: Let K be a finitely generated field of characteristicp > 0. Let A, B
be abelian varieties over K and ¢ # p a rational prime. Then the following
statements are equivalent:

(a) B is a quadratic isogeny twist of A.
(b) There exists a quadratic character x : Gal(K) — {£Ida} such that
PBL =X @ pAe-
If K is finite, then the equivalent conditions (a) and (b) are also equivalent to

(¢) L(B/K,T) = L(A/K,T) or L(B/K,T) = L(A/K,~T).

Proof. We prove the implication (a)=(b): Assume B is a quadratic isogeny
twist of A. Then there exists a quadratic character x : Gal(K) — {£Id4} and
a K-isogeny B — A,. From Lemma 2.2 and Remark 2.5 we conclude that

PB.L = PALE =X @ PA,L-
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For the proof of the implication (b)=-(a) assume that there exists a quadratic
character x : Gal(K) — {£Ida} such that pp¢ = x ® pa¢. From Remark 2.5
we conclude that pp ¢ = pa, ¢ and then Corollary 2.4 implies that there exists
an isogeny B — A,. It follows that B is a quadratic isogeny twist of A.

From now on assume that K is finite. Then Gal(K) = Z and thus there exist
exactly two quadratic characters thereof.

We prove the implication (b)=-(c): If x is the trivial character then pp ¢ =pa ¢
and hence L(A/K,T) = L(B/K,T). If x is non-trivial, then pp ¢ = pa, ¢, hence

L(B/K,T) = L(A\,T) = L(A/K,~T)

by Corollary 2.4 and Remark 2.5.

We prove the implication (c)=-(a): If L(B/K,T) = L(A/K,T), then A is
isogenuous to B by Corollary 2.4. If L(B/K,T) = L(A/K,—T) and x the
nontrivial quadratic character, then

L(B/K,T) = L(Ay/K,T)
and Corollary 2.4 implies that B is isogenous to A,, as desired. |

Remark 2.7: Let A and B be abelian varieties over a field K and ¢ a prime
different from the characteristic of K. Note that

pAXB,g(U) = pA7g(U) X pB,é(U) for all o € Gal(K).
Thus
paxp,e(Gal(K)) C GLy,4)(Qe) x GLy,(5)(Qr) C GLy,(4)xv,(B)(Qe).

Let pa and pp be the projections of the product GLy,(4)(Q¢) x GLy, () (Q¢).
Then

pae(o) =palpaxpe(o)) and ppe(o) =pp(paxp.e(o))

for all o € Gal(K). Thus the actions of Gal(K) on V;(A) and Vp(B) and the
induced action on Homg, (Ve(A), Ve(B)) factor through G = paxp.¢(Gal(K)).
Let G = paxp(Gal(K))%r. If K is finitely generated, then the natural map

(4) Hompg (A, B) @7 Q¢ — Homg, (Ve(A), Ve(B))“ = Homg, (Ve(A), Ve(B))¢
is bijective by the Tate conjecture (cf. Theorem 2.3).

The following lemma and its proof are inspired by [20, Prop 2.10].
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LEMMA 2.8: Let A and B be abelian varieties over a field K and keep the no-
tation from Remark 2.7. Let K° be the fixed field of the group (paxp.e)”*(G°).
Then

(5) HOHlKo (AKO s BKo) = HOHI?(A?, Bf)

If K is finitely generated, then the above specialization map (4) induces a
bijective map

o

(6) Homye(Az, Br) ©z Q¢ — Homg, (Ve(A), Ve(B))< .
Proof. For (5) it is enough to prove that
HomKo (AKO s BKo) = HOHIK/ (AK/, BK/)

for every finite Galois extension K'/K with K° C K’. The profinite group
Gal(K”) is of finite index in Gal(K') and thus

paxp.(Gal(K')"

is a closed subgroup scheme of finite index in G°. Thus finitely many cosets of
paxp.e(Gal(K'))% cover G°. As G° is connected, it follows that

pAXBj(Gal(K/))Zar _ Qo.

Let H = Homg, (V¢(A), V¢(B)) and consider the diagram

Hom o (Ago, Bgo) — JG° — [Gal(K®)
|
HOIHK/(AK/,BK/) — HQO [ HGal(K’)

The horizontal arrows are injective (cf. Theorem [15, Prop. 12.2]). Thus, for
every f € Homg (Ags, Bi+), the map Vp(f) € H is invariant under Gal(K°)
and, by the injectivity of the horizontal maps of the diagram, f itself is invariant
under Gal(K°) which implies f € Homgo(Ago, Bio). This finishes up the proof
of (5). If K is finitely generated, then (5) together with the Tate conjecture
(cf. Theorem 2.3) implies that (6) is bijective. |
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3. Abelian schemes

Throughout this section let S and T be noetherian, normal and connected
schemes. Note that then the local rings of S are domains and thus [10, 6.1.10]
(together with the connectedness of S) implies that S is in fact irreducible. Fur-
thermore S is reduced. Similarly 7" is reduced and irreducible. Let F' (resp. E)
be the function field of S (resp. T'). Let u : T — S be a morphism. Furthermore
consider the point
t:Spec(E) - T - S

of S. We fix throughout this section a rational prime ¢ € IL(T"). This is possible
by the following lemma. We note that automatically ¢ € L(5).

LEMMA 3.1: For every scheme X, the set IL(X) is non-empty.

Proof. If there exists p € L U {0} such that char(k(z)) = p for all z € X,
then L(X) = L\ {p} is not empty. Otherwise, there exist z1,z2 € X such
that char(k(z1)) # char(k(z2)) and char(k(x1)) > 0, hence putting

£ := char(k(x1))

we get 22 € X[¢~!] and thus ¢ € L(X), so that L(X) is non-empty also in that
case. 1

Let o7 /S be an abelian scheme with generic fiber A/F. Let @7 := & xg T
and let Ay := &/ xg Spec(F) be the generic fiber of @ — T. We then have

cartesian squares

Ar oty o A
R R
Spec(E) T S Spec(F)

Let n € N. Then the restriction of &/[¢"] to S[¢~!] is a finite étale S[¢~1]-
scheme of rank ¢24m(4)n T particular, the action of Gal(F) on A[¢"](F) factors
through 71 (S[¢~1]). Likewise pa ¢ factors through m (S[¢71]), i.e., we can view

it as a homomorphism

pae: T (SET]) = GLy,)(Q).

There exists a finite connected étale cover S — S[¢~!] such that &/[("] x S’
splits up in a coproduct of £2*4m(A) copies of S, i.e., it is a constant group



Vol. TBD, XXXX HOMOMORPHISMS OF ABELIAN SCHEMES 13

scheme. There is a point ¢’ : Spec(E) — S’ over t and a point ¢’ : F — S’ lying
over the generic point of S. As &7/[¢"] xg S" is a constant group scheme, the
natural maps

A[")(F) = A [€")(S") — Ar[C")(E)
derived from these points are bijective. We thus get a specialization isomor-
phism
sagm : A[")|(F) — Ar[0"](E)
and accordingly a specialization isomorphism
saree : To(A) — Ty(Ar).
These are equivariant for the action of 7 (S[¢~1]). In particular we have
dim(A) = dim(Ar).

Definition 3.2: Let G be a group, Sp an open subscheme of S and p : 71(Sp) = G
a homomorphism. Let Ty := u~1(Sp). We define u*p to be the composite

morphism'
7T1(T0) h 7T1(SO) —G.
If u is clear from the context we put pr := u*p. We say that T (or u) is

p-generic if Tj is not empty and

pr(mi(To)) = p(m1(So)).

We often apply this notation in the case where Sy = S[¢~!] and p = pa.
Note that in that case u=1(Sp) = T[(~!] is automatically non-empty by our
choice of /.

Remark 3.3: The specialization isomorphism s4 7 ¢~ : Te(A) — Te(Ar) gives
an isomorphism
U pae = page-

of representations of Gal(E).

For the rest of this section let Z be an abelian scheme over S with generic
fiber B/F. Define Br := % xs T and let By := % x1 Spec(F) be the generic
fiber of B — T.

1 Note: The fundamental group of the empty scheme is the trivial group.
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LEMMA 3.4: The canonical map
Homg(«7, %) — Homp(A, B), f+— fr
is bijective.
Proof. Let % be the category of all dense affine open subschemes of S. Then

Spec(F) = lim U
Ue#
(projective limit of schemes, cf. [11, 8.2]). It follows from [11, 8.8.2] that the

natural map

(7) hﬂ HomU(,QfU, %U) — HOIHF(A, B),
Ueu

induced by the natural maps Homy (&, By) — Homp(A,B), f — fr, is
bijective. Moreover, by [8, Prop. 2.7], for every U € % the natural map

Homg (o, ) — Homy (7, Bu), [+ fu

is bijective, and therefore the natural map

(8) Homg (7, #) — lim Homy (o, Bu)
Ueu
is bijective. The assertion is immediate from the bijectivity of (7) and (8). i

LEMMA 3.5: The canonical map
(9) Homg (', %) — Homy (e, Br)
is injective.
Proof. Choose a point t € T'. We even prove that the composite homomorphism
(10) Homg (o, #) — Homy (e, Br) — Homy (o, Bt)
is injective. Let f be in the kernel of (10). Then
fi: o xs Spec(k(t)) = % xgs Spec(k(t))

is the zero homomorphism. Hence f must be the zero homomorphism by the
rigidity lemma [15, 20.1]. |
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Note that, by Lemmata 3.4 and 3.5 above, there is a canonical injective
specialization map
ro @ 1,s : Homp(A, B)~Homg(</, %)

11
( ) *)HOHIT(Q{T,%T) %HomE(AT,BT).

Let p¢ := paxB,e,
G = pe(mi (S[E1))%

and let S’ be the finite étale cover of S[¢{~1] corresponding to the subgroup
py H(G°) of m1(S[¢71]). Let F’ be the function field of S’. Then, by Lemma 2.8,

HomF/ (AF/7 BF/) = Homf(AF, Bf)

Let T” be an irreducible component of T' x g S’ and E’ the function field of T".
Then E'/FE is a finite separable extension and we can consider the composite
map

F%,@,T,S ZHOIHF(AF, Bf) = HomF/ (AF/ y BF/)
(12)

Td’ﬂ)/'SIHOInE/ (AT,E’ R BT,E/) — Homf(ATE, BT,E)

which tacitly depends on the choice of 7" and on the choice of an embedding
E’ — E. This map
Fd’@’T’S : HOHIF(AF, Bf) — HomE(AT,E7 BT,E)

is injective.
LEMMA 3.6: Let f : A — B be a homomorphism. Let fr : Ap — Br be the
homomorphism fr := 1z %71 .5(f) obtained from f by specialization.

(a) dim(im(f)) = dim(im(fr)),

(b) dim(ker(f)) = dim(ker(fr)),

(¢c) f has finite kernel (resp. is surjective, resp. is an isogeny) if and only if

fr has finite kernel (resp. is surjective, resp. is an isogeny).

Proof. With the above specialization isomorphisms we construct a diagram
Ve(f)
Vi(A) —— Vi(B)

Ve(fr)
Vi(Ar) -5 Ve(Br)
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whose vertical arrows are bijective. Together with Lemma 2.2 we get:
dim (ker(f)) = %dim(ker(Vg( ) = %dim(ker(Vg( ) = dim(ker(fr)),
dim(im(f)) = 5 dim(im(Vi(f)) = 3 dim(im(Vi(fr)) = dim(im(fz)).
This proves (a) and (b), and (c) is immediate from that. |

Remark 3.7: For f € Homy(Ag, Br) and fr := T 2,7,5(f) one can compare
dimension data of f and fr in a completely analogous way. This is a conse-

quence of Lemma 3.6 and the construction of 7oy 2 7. s.

LEMMA 3.8: If both fields E and F are finitely generated and u : T — S is
PAx B,e-generic, then the canonical maps

To/ ,B,T,S & Ly : HOHIF(A, B) & Lo — HOIIlE(AT7 BT) ® Ly
and
T 37,8 Ly : Homf(AF, Bf) R Ly — HomE(ATE, BT,E) ® Zy

are bijective. In particular, under these assumptions coker(re gz r.s) and
coker (7o 2 1.5) are finite groups of order prime to {.

Proof. We identify, T;(A) with T;(Ar) and Ty(B) with Ty(Br) along the natural
and equivariant specialization isomorphisms. Let p; := paxB,e,

G = pe(m (S)* and Gy = (pe)r(mi (T[E1])%".
Let
Te =T BTSR Ly

and 7¢ =T 1,5 ® Z¢. We then have a commutative diagram

Homp(A, B) ® Zy ——— Homp(Ar, Br) ® Zy

J J

Homg, (Vf(A)v Vé(B))Q — Homyg, (Vf(A)a Vf(B))QTa

where the vertical maps are bijective (cf. Tate conjecture, Remark 2.7). The
lower horizonal map is bijective because G = G by our assumption that T is
pe-generic. Hence the upper horizontal map r;, is bijective, too.
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Next consider the commutative diagram

Homp(Ag, By) ® Zg —— Homg (A 5, Brp) © Z

| |

Homz, (Ve(A), Ve(B))¢" —— Homz, (Ve(A), Ve(B))<

where the vertical maps are bijective (cf. Tate conjecture, Lemma 2.8). The
lower horizonal map is bijective because

G° = G5

Hence, 77 is bijective. The Z-module Homg (A, 5, B, ) is free and finitely
generated. Hence, the statement about the cokernels of ro 2z 7.5 and Ty 2. 7.5
follows as well. ]

4. Hilbertianity

Throughout this section let Z be a regular noetherian connected scheme. Let S
be a connected scheme and f : S — Z a morphism of finite type which is
assumed to be smooth. Note that S and Z are reduced and irreducible. Let d
be the relative dimension of S/Z. Let K be the function field of Z. Assume
that K is finitely generated. We denote by Sm,,(S/Z) the set of all connected
subschemes T of S such that the restriction f|T : T — Z is smooth of relative
dimension m. Note that every T € Sm,,,(S/Z) is regular and connected, hence
reduced and irrecucible.

The aim of this section is to consider specializations to subvarieties
in Sm,,,(S/Z). The results of this section are in our opinion most interesting in
the following cases:

(1) The case where Z = Spec(k) for a finitely generated field k; in that
case S is simply a smooth k-variety.

(2) The case where Z is an open subscheme of Spec(R) and R is the ring
of integers in a number field; in that case S is sometimes called an
arithmetic scheme.

The following lemma is inspired by Drinfeld’s “conventional formulation of
Hilbertianity” in [6, Section A.1.].
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LEMMA 4.1: If K is Hilbertian, then for every dense open subscheme U of S and
every finite étale morphism p : X — U there exists a connected subscheme T
of U with the following properties.

(a) T is a subscheme of (f|U)~*(Z') for some dense open subscheme Z'
of Z.

(b) f|IT :T — Z' is finite and étale.

(c) p~YT) = X xg T is connected.

Proof. As f is smooth, after replacing U by a smaller dense open set and after
replacing X accordingly, there exists an étale Z-morphism g : U — Z X Ay
(cf. [12, Exposé I1, §1]). For any dense open subscheme Z’ of Z we can consider
the following commutative diagram of schemes

PK 9K

Xk Uk Ag g — Spec(K)

A S

X L 7 xA s 7,

where U =U xz Z', X' = X xz Z' and ¢’ and p’ are the restrictions of g and
p respectively. As K is Hilbertian there is a point a € Ag(K) such that

(9r o px) " (a) = Spec(F) and gx'(a) = Spec(E)

where E/K and F/E are finite separable field extensions. For a suitable choice
of Z' the closed immersion a : Spec(K) — Ag4 x extends to a closed subscheme Y
of Z' x Ay (cf. [11, 8.8.2 and 8.10.5]). Put T':= ¢~ (V) and X7 := p~}(T).
After replacing Z’ by one of its dense open subschemes we can assume that
the maps p|Xp : Xy — T and g : T — Y are finite and étale, because the
corresponding maps on the generic fibers

(9x o px) "' (a) = Spec(F) — gx'(a) = Spec(E) — Spec(K)

are finite and étale. The closed subscheme T := g~!(Y) of U’ is connected
because it is finite and étale over Z’ and its generic fiber

T x 7 Spec(K) = g'(a) = Spec(E)

is connected. Likewise the closed subscheme X7 of X’ is connected, because it
is finite and étale over Z’ and its generic fiber X1 Xz Spec(K) = Spec(F) is
connected. [ |
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COROLLARY 4.2: Let G be a profinite group and assume that the Frattini
subgroup ®(G) of G is open in G. Let p : w1 (S) — G be a group homomorphism.
For every dense open subscheme U of S and every m € {1,...,d} there exists
aT € Smy,(S/Z) such that T C U and such that T is p-generic. If K is
Hilbertian, then the same holds true for m = 0.

Proof. We consider the homomorphism
P mi(S) 2 G — G/o(G).

The image of p’ is finite because ®(G) is open in G. By the Frattini property,
a subscheme T' € Sm,,,(S/Z) is p-generic if and only if it is p’-generic. In the
proof of the corollary we can hence assume that G is finite.

CASE A: Assume that K is Hilbertian and m = 0. Let X be the finite étale cover
of S corresponding to the kernel of p. By Lemma 4.1 there exists T' € Sm,, (5/72)
such that 7' C U and such that T xg X is connected. This implies that T is
p-generic.

CASE B: Assume that m € {1,2,...,d} (and K arbitrary). As f: S — Z is
smooth we can, after replacing U by a smaller open set, assume that there exists
an étale Z-morphism U — Z x Ay. Composing with an appropriate projection
we get a smooth morphism

S—>ZxA;g— ZxA,.

Note that Smo(S/Z x Ap,) C Sm,,(S/Z). The function field K(z1,...,zm)
of Z x A,, is Hilbertian (even if K is not). We can thus apply Case A with Z
replaced by Z x A,, to finish up the proof in Case B. ]

Remark 4.3: If G is a compact subgroup of GL,(Q;), then ®(G) is open in G
(cf. [5, Thm. 8.33], [19, §10.6]). Hence, the above Corollary 4.2 can be applied
to f-adic representations of m (S[¢~1]), e.g., to pax B¢

From now on until the end of this section, let &/ and £ be abelian schemes
over S. For T' € Sm,, (S/Z) we denote (as in the previous section) by Ar/R(T)
(resp. by Br/R(T)) the generic fiber of @ — T (resp. of Br — T'). Finally,
for £ € L(S) we define

Pe = PAXB,L-

The following lemma is at the core of the rest of the arguments of this section.
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LEMMA 4.4: Let m € {0,1,...,d} and T € Sm,,(S/Z). Let Ay, Ay be sub-

sets of N. If there exists an R(T)-homomorphism f : Ap — Brp (resp. R(T)-

homomorphism f : A5 — B ) such that

T,R(T) T,R(T)

dim(ker(f)) € A1 and dim(im(f)) € Aq

and if T is pg-generic, then there exists an R(S)-homomorphism F : A — B

(resp. R(S)-homomorphism F : AW — BW) such that
dim(ker(F)) € A; and dim(im(F)) € A,.

Proof. Let f : Ap — Br be an R(T)-homomorphism such that we have
dim(ker(f))€A; and dim(im(f))€Aq, and assume that T is p,-generic. By
Lemma 3.8 the specialization maps

ri=rg prs  Hompgs) (A, B) — Hompr)(Ar, Br),

T:=Tg ®BTS: HomR(S)(AR(S), BR(S)) — HomR(T)(ATyR(T),BTVR(T)),

are injective with finite cokernels C' = coker(r) and C = coker(T). Let s = |C|.
Then s o f lies in the image of . Thus there exists an R(.S)-homomorphism
F: A — B such that 7(F) = so f. Using Lemma 3.6 once more, we see that

dim(ker(F)) = dim(ker(s o f)) = dim(ker(f)) € Ay,
dim(im(F)) = dim(im(s o f)) = dim(im(f)) € As.

The proof of the respective case can be carried out in a completely analoguous
way using T instead of r and taking Remark 3.7 into account. |

We are ready for our first local-global statement.

THEOREM 4.5: Let U be a dense open subscheme of S. Let m € {0,1,...,d}.
Assume that K is Hilbertian or that m > 1. Let Ay and Ay be subsets of N.
The following are equivalent:

(a) There exists an R(S)-homomorphism F' : A — B (resp. R(S)-homomor-
phism F : Apry — BW) such that dim(ker(F')) € A; and one has
dim(im(F)) € A,.

(b) For every T € Sm,,(S/Z) with T C U there exists a R(T)-homomor-
phism f: Ap — Br (resp. R(T)-homomorphism f : AT,W — BT,W)
such that dim(ker(f)) € Ay and one has dim(im(f)) € As.
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Proof. Assume (a) holds true and let T € Sm,,(S/Z). There exists £ € L(T)
by Lemma 3.1. The existence of f as in (b) is then immediate from the
mere existence of the specialization maps ry 2,15 and 7o @15 (cf. defini-
tions of maps (11) and (12)) plus the fact that they “respect dimension data”
(cf. Lemma 3.6 and Remark 3.7). This proves (a)=-(b).

We now prove the implication (b)=-(a). Assume (b) is true. Choose £ € L(U)
(cf. Lemma 3.1). By Corollary 4.2 (applied with S[¢~!] instead of S and
with U[¢~1] instead of U)) there exists T'€ Sm,, (S[¢{~1]/Z) such that

TCcuUle

and such that T is pg-generic. By (b) there exists an R(T')-homomorphism

f:+ Ar — Br (resp. R(T)-homomorphism f : AT,W — BT,W) such that

dim(ker(f)) € Ay and dim(im(f)) € Az. Now (a) follows by Lemma 4.4. n

Proof of Theorem A. Apply Theorem 4.5 with
A1={0} and As={dim(B)}

(resp. with A1=N and Ay={dim(B)}, resp. with A;={0,1,---,dim(A)—1} and
Ay=N; resp. with A;={x} and Ay=N). |

COROLLARY 4.6: Let U be a dense open subscheme of S. Let m € {0,1,---,d}.
Assume that K is Hilbertian or that m > 1.

(a) The following are equivalent:
(i) A is not a simple R(S)-variety.
(ii) For every T € Sm,,(S/Z) withT C U the fiber Ay is not a simple
R(T)-variety.
(b) The following are equivalent:

(i) Agrgy is not a simple R(S)-variety.
(ii) For every T € Sm,,(S/Z) with T C U the fiber A

T R(T) is not a

simple R(T)-variety.
Proof. Note that A is non-simple if and only if there exists
ke {1,2,... dim(A)—1}

and a homomorphism A — A with k-dimensional kernel. Thus the corollary is
a formal consequence of Theorem 4.5. |
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THEOREM 4.7: Let U be a dense open subscheme of S. Let me{0,1,...,d}.
Assume that K is Hilbertian or that m > 1. The following are equivalent:

(a) A is a quadratic isogeny twist of B.
(b) For every T € Sm,,(S/Z) with T C U the abelian variety Ar is a
quadratic isogeny twist of Brp.

The implication (a)=-(b) holds true also in the case where Z = Spec(k) with a
finite field k and m = 0.

Proof. We prove the implication (a)=-(b): Assume that A is a quadratic
isogeny twist of B and let T € Sm,,(S/Z). Assume that T C U. Choose
¢eL(T) (cf. Lemma 3.1). It follows by Lemma 2.6, that there exists a
X € Hom(Gal(R(S)), {£Idp}) such that

PAL=E X ® pBe.
For every o € ker(Gal(R(S)) — 71 (U[(~])) we have
pac(o) = Idz,(4) and ppi(o) = ld7, (B,
hence x(0) = +Idp, i.e., x factors through 71 (U[(~!]). Now we have
PAre = U par=u"(X®pBe) =UX QU PR = XT Q PBr

where w:T—S is the embedding and yz:mi(T[¢~!])—{%Idp,} is a quadratic
character. By Lemma 2.6 Ap is a quadratic isogeny twist of Brp.

We now prove the other implication (b)=-(a): Assume that for every
T € Smy,(S/Z) with T C U the fiber Ar is a quadratic isogeny twist of Br.
Let £ € L(U) (cf. Lemma 3.1). By Corollary 4.2 there exists T' € Sm,,(S/Z)
with T C U[¢~] such that T is pax g ¢-generic. Let

H =ker(paxp,e: m(SEC']) = GLz,axp)(Ze))

and

1 = ker(paxp,e © ).

Then u, : m (T) — m1(S[¢71]) induces an isomorphism
(T ) A — m (S[Y)) ).
By Lemma 2.6 there exists xr € Hom(mi(T), {£Idp, }) such that

PAr L = XT @ PBr -
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It follows that
XT (U) == +IdBT;

for every o € Jp, because 0 € ker(par ) Nker(ppr¢). Hence xr factors
through 71 (T)/#7 and thus induces a quadratic character x of 71 (S[¢~1])/#
and thus of 71(S[¢~1]), such that

PALEX R pPBe-

Thus (a) holds true by Lemma 2.6. R

5. Specialization to a finite field

In Theorem 4.5, Corollary 4.6 and Theorem 4.7 the case when k is finite
and m=0 has been excluded. This case is more difficult and cannot be handled
with Hilbertianity alone. In this section we generalize parts of results 4.5, 4.6,
4.7 (under additional assumptions) to this “critical” case by using recent results
of Khare-Larsen [13] and Fité [9].

Definition 5.1: Let A be an abelian variety over a finitely generated field K and
let ¢ # char(K) be a rational prime. Let G, be the connected component of the
Zariski closure of p4 ¢(Gal(K)). We say that A satisfies condition MW C(A)
if for all rational primes ¢ # char(K) the action of Qe@[ on each irreducible
factor of the representation V;(A)®gq, Q, is minuscule in the sense of Bourbaki [1]
cf. [13, p. 1].

Remark 5.2: Let A be an abelian variety over a finitely generated field K sat-
isfying MW C(A). Let B be an abelian variety.

(a) For every finite extension K’'/K the abelian variety Ak satisfies
MWC(Agk+) because the connected component of the Zariski closure
of pae(Gal(K')) agrees with the connected component of the Zariski
closure of p4 ¢(Gal(K)) as Gal(K"’) is of finite index in Gal(K).

(b) If f : A — B is a surjective K-homomorphism, then B satisfies
MWC(B), because Vi(f) : Vo(A) — Vi(B) is a surjective homomor-
phism of representations.

(¢) If B is an abelian subvariety of A, then there exists surjective homo-
morphism A — B by [15, Prop. 12.1] and thus B satisfies MW C(B)

by (b).
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Remark 5.3: If K is a number field, then MWW C(A) holds true for every abelian
variety A/K due to a result of Pink [16, Cor. 5.11] which proves Zarhin’s mi-
nuscule weights conjecture [24, Conjecture 0.4] in the number field case. The
same holds true if K is a finitely generated field of characteristic zero; using
Hilbertianity one can easily reduce to the number field case. According to
[24, Conjecture 0.4] every abelian variety over a global field of any characteris-
tic should satisfy MW C(A). Zarhin [24, 4.2.1] proved his conjecture for K a
global field of positive characteristic and A/K an ordinary abelian variety. In a
recent preprint [4] Cadoret and Tamagawa formulated an anologue of Zarhin’s
conjecture over finitely generated fields and checked that MW C(A) holds true
for another case of A over K finitely generated of positive characteristic, see [4,
Cor. 6.3.2.3]. On the other hand, the analogue of the conjecture of Zarhin in
positive characteristic seems to fail in general, as indicated by a result of Biiltel
(cf. [2, Thm. 1.2], [2, Comments and examples, p. 637]) who constructed an
abelian variety of dimension 56 over a finitely generated field of positive char-
acteristic with a simple factor of exceptional type Go (there are no minuscule
weights in this case !) in its f-adic monodromy group.?

The following is a global function field analogue of a result of Khare and
Larsen [13, Thm. 1]. We include the proof for the reader’s convenience.

PROPOSITION 5.4: Let S be a smooth curve over a finite field k. Let </, %
be abelian schemes over S with generic fibers A and B respectively. As-
sume that A satisfies MW C(A) and B satisfies MW C(B). If the set of all
closed points s € S such that there exists a non-zero k(s)-homomorphism
A
homomorph1sm Ay "E) Bk(S)

@ — B, %y has Dirichlet density 1, then there exists a non-zero k(S)-

Proof. Let K = R(S). Fix one rational prime ¢ # char(K). After replacing S
by one of its connected finite étale covers, we can assume that the Zariski
closures G 4 of pa ¢(Gal(K)), Gg of pp¢(Gal(K)) and G of paxp.e(Gal(K)) are
connected. The action of Q@e on V4 := Vi(A)®0, Q, and on Vg := V;(B)®g, Q,
is minuscule. By [14, Thm. 1.2] and [18] the set of all closed points s € S such
that the Frobenius element Fr, € G(Q) generates a Zariski dense subgroup
(F'rs) of a maximal torus of G has positive density. Thus we can choose a closed

2 For more examples of abelian varieties of this type the reader can consult [3] which
appeared in the arXiv after our paper had been submitted for publication.
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point s € S such that (Fry) is a Zariski dense subgroup of a maximal torus T
of G and such that there exists a non-zero homomorphism f : A_ e B .

8:k(s) s,k (s)
Furthermore, f is defined over a finite extension k' of k(s). Now |k'| = |k(s)|™,
for a natural number m and thus f is fixed under the action of F'r{*, and F'r}’®

also generates a Zariski dense subgroup of T. It follows that the map
Ve(f)®@Qp:Va— Vp

induced by f is fixed by the torus T. Moreover, V;(f)®Q, is a non-zero element
of Homp(Va, Vp). Thus

dim(HomE(VA, Vg)) > 0.

Now G is a reductive group because pax g ¢ is semisimple. By our assumption
A satisfies MW C(A) and B satisfies MW C(B). Thus we can apply [13, Prop. 2]
to conclude that

dim(HOHlQ(VA, VB)) > 0.

From Homg(Va, Vi) & Homg (A, B) ® Q, and the fact that Homg (A, B) is
Z-free it follows that Homg (A, B) is non-zero, as desired. |

We can now treat higher dimensional S by combining Proposition 5.4 with
the results of the previous section.

THEOREM 5.5: Let S be a smooth variety over a finite field k. Let <7, % be
abelian schemes over S with generic fibers A and B respectively. Assume that A
satisfies MW C(A) and B satisfies MW C(B). The following are equivalent:

(a) There exists a non-zero k(S)-homomorphism Agsy — By
(b) For every closed point s € S there exists a non-zero k(s)-homomorphism

As,m — B

s,k(s)"

Proof. After replacing S by one of its connected finite étale covers we can
assume that

Homk(s) (A, B) = HOIH@(AW, B@)

The implication (a)=-(b) is immediate from Lemma 3.6 and Remark 3.7.

We prove the other implication (b)=(a): Let K = R(S) and let £ # char(K)
be a rational prime. By Corollary 4.2 there exists a T' € Sm; (S/k) of S such
that T is pax p,¢-generic. Then T' is automatically pa ¢-generic and pp ¢-generic.
In particular,

pae(Gal(K )2 = pa, (Gal(k(T)))%".
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In particular, Ar/k(T) satisfies MWC(Ar). Similarly Br/k(T) satisfies
MWC(Br). By (b), for every closed point ¢ € T there exists a non-zero homo-
morphism Am — BWE)' By Proposition 5.4 there exists a non-zero homomor-

phism A — B Now (a) follows by Lemma 4.4. |

T.k(T) T.k(T)

We can upgrade Theorem 5.5 a bit, to treat not only non-zero homomor-

phisms but also other important classes of homomorphisms, much in the spirit
of Corollary B.

THEOREM 5.6: Let S be a smooth variety over a finite field k. Let <7/, % be
abelian schemes over S with generic fibers A and B respectively. Assume that A
satisfies MW C(A) and B satisfies MW C(B). The following are equivalent:

(a) There exists a surjective k(S)-homomorphism (resp. k(S)-isogeny)
A = Bresy
(b) For every closed point s € S there exists a surjective k(s)-homomor-

phism (resp. k(s)-isogeny) A s o ~ Bory

Proof. The implication (a)=(b) is immediate from Lemma 3.6.
We prove the implication (b)=- (a) in case “surjective”. After replacing S by
one of its connected finite étale covers we can assume that

Homk(s) (A, B) = Homk(s) (AW Bm)

(13) Endy(s)(A4) = Endgzy(Azsy),

Endk(s)( ) Endk(S) (Bm)

By the Poincaré reducibility theorem (cf. [15, Prop. 12.1] and the passage
below) A (resp. B) is k(S)-isogenous to [[,o; A" (vesp. [[,c, B;"") where I
and J are finite sets, the A; (¢ € I) are mutually not k(S)-isogenous simple
abelian varieties over k(S) and the B; (j € J)) are mutually not k(S)-isogenous
simple abelian varieties over k(S). We consider the commutative diagram

0 ng XN
Endk(S)(AW) I jer Ho k(S)(AszAJk(S)) 8

ng XN
IL jer sij

End}g) (Ar(s)) —— [1; jer Homy ) (Ai, A;)"ixm

where the

(A —=, A

Sij - HOI’D%(S) (Ai; A]) — HOI’DO 4505 j7m)

k(S)
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are the canonical maps. The horizontal maps in the diagram are bijective. The
left hand vertical map is bijective by (13). Thus the s;; are bijective, too.
For ¢ # j we have A; % A;, hence

HomO—(Ai A

%(5) = Homg(s)(A“A]) =

@A)

and thus the A, i k(5) e mutually non-isogenous over k(S). As A; is simple
it follows that Endz( 5 (Alm) = Endg(s) (A;) is a division algebra over Q
and thus the A, = RS are simple. Likewise the Bjm are simple and mutu-
ally non-isogenous over k(S). Note that MW C(A;) and MW C(B;) hold true
(cf. Remark 5.2).

After replacing S by one of its dense open subschemes each A; (resp. B;)

extends to an abelian scheme <7 (resp. %;) over S. It is then clear that for
ng

ier A me

In what follows we can thus

ier Aitand that B = [, BmJ

From (b) we know that for every closed point s € S there exists a SuI‘JGCthG

every closed point s € S the fiber A 7 is k(s)-isogenous to []
and B, 77 is k(s)-isogenous to [];c ; Bj’&@.

asssume, without loss of generality, that A =[]

k(s)-homomorphism A sk B (5 and thus for every j € J a surjective
homomorphism A sk B] s F0)

By Theorem 5.5 there exists for every j € J a non-zero homomorphism
Apsy — B,y Thus, for every j € J, there must be a unique v(j) € 1,
such that there exﬁ a non-zero k(S)-homomorphism h; : A, ke B, s
and h; must be a k(S)-isogeny, because Au(j),m and Bj,m are both simple.

We now show that n, ;) > my, for all j € J. Let j € J be arbitrary. Let

A= [ Ar

i€I\{v(4)}
Then for every j € J we have
A=A x AL
v(j)
There is no non-zero k(S) homomorphism A’ — S — Bj EOL because the Ai,m

are mutually non-isogenous over k(S) and Ay(j) WS = B] WS The contrapo-
sition of Theorem 5.5 implies that there exists a closed point s € S such that

there is no non-zero k(s)-homomorphism A’ G B, 5(s- Furthermore,
by (b), there is a surjective kz(s)—homomorpmsm
A — AT % A’ mj

o = A eim X Asw® 7 Biaie
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which restricts to a surjective k(s)-homomorphism

A™O {0} - B

v(5),,k(s) Jsk()

As dim(Au(j),s,m) = dim( ]Sk(s)) this finally shows that n,;y > m; as
claimed above.
This together with the existence of the isogeny h; implies the existence of

a surjective k(S)-homomorphism f; : AZ(;;)W — B;”IZ L and these in turn
induce a surjective k(S)-homomorphism
() m _
(14) H E H v(4),k(S) - H Bg kJ(S) Bk(S)'
jeJ  je j€J

Composing the surjective k(S)-homomorphism (14) with the projection
- 0 (j)
i~ 1A s
jeJ

we obtain a k(.S)-epimorphism Am — BW as desired.
We next prove the implication (b)=-(a) in case “isogeny”. In that case we
know by (b) that for every closed point s € S there exists a k(s)-isogeny

gs: A — B

s,k(s) s,k(s)"

The above arguments imply the existence of a surjective k(S)-homomorphism

g: Ak(s) — BW' Let s € S be a closed point. Then, by the existence of the
isogeny gs,
and thus g must automatically be an isogeny. ]

We shall now establish a global function field analogue of [9, Cor. 2.7], fol-
lowing proof in loc. cit. quite closely. For this we need the following theorem
of Rajan [17]. Let K be a global field and denote by Y the set of all non-
archimedian discrete valuations of K. Let ¢ # char(K) be a rational prime
and let py @ Gal(K) — GL,(Qg) and ps2 : Gal(K) — GL,(Q¢) be continuous
semisimple representations which are unramified outside a finite set S C Y.
Define

SM(pr, p2) = {v € S : Tr(p1(Fr,)) = Tr{pa(Fr,))}.
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THEOREM 5.7 (Rajan, [17, Thm. 2]): Suppose that the Zariski closure Hy
of p1(Gal(K)) is connected and that the upper Dirichlet density of SM (p1, p2)
is positive. Then the following hold true:

(a) There is a finite Galois extension L/K such that pi|gai(r)=p2|cai(r)
and the connected component of the Zariski closure of ps(Gal(K)) is
conjugate to Hi.

(b) If p1 is absolutely irreducible, then there is a Dirichlet character
x : Gal(L/K) — Q/ of finite order such that

p2 =X ®q, p1-
We have the following global function field analogue of [9, Cor. 2.7].

PROPOSITION 5.8: Let S be a smooth curve over a finite field k. Let </, %
be abelian schemes over S with generic fibers A and B, respectively. Let { #
char(k) be a rational prime and let K = k(S). Let U be a dense open subscheme
of S. Assume that Endm(A) = Endm(B) = 7 and that the Zariski closures
of pa(Gal(K)) and of pp¢(Gal(K)) are connected. If the set of all closed
points w € U such that A, is a quadratic isogeny twist of B, has Dirichlet

density 1, then A is a quadratic isogeny twist of B.

Proof. Let I be the set of all u € U such that A, is a quadratic isogeny twist
of B,. Assume that I' has Dirichlet density 1. We claim that SM (pe,a, pe.B)
has positive upper Dirichlet density. Consider the two sets

Iy :={uel :Tr(pae(Fry)) =£Tr(ppe(Fry))}

For every u € T' we have Tr(pa ¢(Fry)) € {£Tr(ppe(Fry))} by Lemma 2.6
(implication (a)=-(c) applied over k(u)). Thus I' =T'y UT_. Moreover

Ly CSM(pe.a,pe.B)-

Because otherwise it would follow that I'y has upper Dirichlet density zero and

that T'_ has Dirichlet density 1. But then the Chebotarev density theorem

would imply that Tr(pae(9)) = —Tr(pse(g)) for all g € Gal(K), which is

obviously false for g = Id. Thus the inclusion I'y € SM (pr, 4, pe,5) holds true.
Our assumption

End—=(A) = End;(B) = Z

k(S) k(S)

implies that p4 ¢ and pp ¢ are absolutely irreducible.
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Now, because of the claim, Theorem 5.7 implies that there is a finite Ga-
lois extension L/K and a character x : Gal(L/K) — Q; of finite order such
that pa¢ = x ® ppe. But now, by Theorem 2.3, we have an isomorphism
of Gal(L/K)-modules

Homp (AL, Br) ® Q¢ = Vy(A)" ®q, Vi(B)
=~ Vi (A)* ®q, Ve(4) © Qu(x)
= Endr,(Ar) ® Qe(x) = Qe(x).

Thus Gal(L/K) acts on Homp (Ar, Br) = Z via x and this implies that x is
a quadratic character. Lemma 2.6 (implication (b)=- (a) applied over K) now
implies that B is a quadratic isogeny twist of A. |

Again one can eliminate the assumption dim(S) = 1 by the Hilbertianity
approach of the previous section.

COROLLARY 5.9: Let S be a smooth variety over a finite field k. Let </, 4 be
abelian schemes over S with generic fibers A and B respectively. Let U be a
dense open subscheme of S. Assume that Endm(A) = Endm(B) = 7. The
following are equivalent:

(a) A is a quadratic isogeny twist of B.

(b) For every closed point w of U the abelian variety A, is a quadratic

isogeny twist of B,,.

Proof. The implication (a)=-(b) is known from Theorem 4.7. We prove the
other implication. Assume that for every closed point u of U the abelian vari-
ety A, is a quadratic isogeny twist of B,. Then, for every smooth connected
curve T on U the abelian variety Ap is a quadratic isogeny twist of Bp by
Proposition 5.8. Thus Theorem 4.7 implies (a). n

Remark 5.10: Tt is easy to show that if A and B in Corollary 5.9 are elliptic
curves with nontrivial endomorphisms, then the claim still holds. It is so, since
then j-invariants j(A) and j(B) belong to k, hence the curves are isotrivial,
cf. [21, V.3.1 and Ex. V.5.8], so a twist between fibers at u € U extends to a
twist between the curves. It is an interesting question, if Corollary 5.9 holds
true for nonsimple abelian varieties, e.g., for products of mutually nonisogenous
elliptic curves over k(S5).
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