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Abstract. The paper contains an expanded version of the talk delivered by the first author

during the conference ALANT 3 in Bȩdlewo in June 2014. We survey recent results on inde-

pendence of systems of Galois representations attached to `-adic cohomology of schemes. Some

other topics ranging from the Mumford-Tate conjecture and the Geyer-Jarden conjecture to ap-

plications of geometric class field theory are also considered. In addition, we have highlighted a

variety of open questions which can lead to interesting research in near future.

1. Geometric Galois representations. Let K be a field of characteristic p ≥ 0, K

an algebraic closure of K and X/K a smooth projective variety of dimension d. Let

L be the set of all prime numbers. Grothendieck and M. Artin defined in [4] for every

j ∈ N the étale cohomology groups Hj(XK ,Z/n). These groups are Z/n-modules. Unlike

singular cohomology the cohomology groups of Grothendieck and Artin can be defined

even if p > 0. In the need for cohomology groups which are vector spaces over a field of

characteristic zero one defines (cf. [4]) for every ` ∈ L the `-adic étale cohomology groups

Hj(XK ,Q`) =

(
lim←−
i∈N

Hj(XK ,Z/`
i)

)
⊗Z` Q`.
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There is a natural representation

ρ
(j)
`,X : GK → Aut(Hj(XK ,Q`))

of the absolute Galois group GK=Gal(K̄/K) on them. Main topics of the paper center

around the families of `-adic Galois representations (ρ
(j)
`,X)`∈L and their images.

1.1. Properties of `-adic cohomology.

Basic facts. We refer the reader to [12] and to Milne’s lecture notes [24] for definitions

and proofs of the facts discussed in this section. The groups Hj(XK ,Q`) behave well for

` 6= char K and they constitute a cohomology theory with properties which we know very

well from algebraic topology.

• Finiteness: Hj(XK ,Q`) are finite dimensional Q`-vector spaces. The groups vanish

for j > 2 dimX = 2d and the top non-zero group H2d(XK ,Q`) identifies canonicaly

with Q`.
• Poincare duality: For i+ j = 2d there exists a perfect pairing of finite dimensional

Q`-vector spaces

Hi(XK ,Q`)×H
j(XK ,Q`) −→ H2d(XK ,Q`) = Q`.

In particular, Hi(XK ,Q`) is dual to H2d−i(XK ,Q`), and they have the same di-

mension.

• Künneth theorem: For any i > 0, and two smooth projective varieties X and Y ,

there are canonical isomorphisms

Hi(XK × YK ,Q`) ∼=
⊕
j+k=i

Hj(XK ,Q`)⊗H
k(YK ,Q`).

• Lefschetz trace formula: One of the most important features of the `-adic cohomol-

ogy is a fixed point formula which says that for any morphism f : X −→ X with iso-

lated fixed points one can compute the number of fixed points of f : X(K)→ X(K),

counted with multiplicities, by calculating traces of Q`-linear maps induced on co-

homology by the morphism f (cf. [24], Thm. 25.1): If Γ is the graph of f and ∆

the diagonal of X, then

(Γ ·∆) =
∑
i

(−1)iTr[f∗ : Hi(XK ,Q`)→ Hi(XK ,Q`)].

The natural action of the Galois group GK on the vector space Hj(XK ,Q`) defines a

continuous homomorphism

ρ
(j)
`,X : GK −→ AutQ`H

j(XK ,Q`)

the `-adic geometric Galois representation attached to the variety X. The representation

ρ
(j)
`,X encodes a lot of important information, which is very interesting even in the case

when K is a subfield of the field of complex numbers.

Classical special cases. We remark to illustrate the usefulness of `-adic cohomology by

describing three special cases of varieties X and their cohomology GK-modules.

Remark. If dimX = 0, then X = Spec(K[T ]/(P (T ))) for a polynomial P ∈ K[T ] and

the set of K-rational points X(K) = {α ∈ K : P (α) = 0} of X is the set of roots
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of P. We identify the only `-adic cohomology group H0(XK ,Q`) with the free Q`-module∐
α∈X(K) Q` with basis X(K). The representation ρ

(0)
`,X : GK −→ AutQ`(H

0(XK ,Q`))
is then induced by the permutation representation GK → Sym(X(K)) well known from

basic courses in algebra and Galois theory.

Remark. Let X be a smooth projective geometrically connected curve over K. Let

g be the genus of the curve X. Then H0(XK ,Q`) = Q`, H1(XK ,Q`) = Q2g
` , and

H2(XK ,Q`) = Q`. The absolute Galois group GK acts on H2(XK ,Q`) via the inverse of

the cyclotomic character ε` : GK −→ Z×` defined by the action of GK on `-powers roots

of unity. The action of GK on H1(XK ,Q`) = Q2g
` is closely related to the action of GK

on the Tate module of the Jacobian variety of X, compare the next example.

Remark. Let X be an abelian variety defined over K. Let

T`(X) = lim
←
X(K)[`k] ∼= Z2g

`

be the Tate module of X. Then Hi(XK ,Q`) =
∧i

H1(XK ,Q`) is the ith exterior power

of the Q`-vector space H1(XK ,Q`). Denote by X̂ the dual abelian variety. Then there is

an isomorphism of GK-modules

T`(X)⊗Z` Q` ∼= H1(X̂K ,Q`)(1),

where for a Q`-vector space M which is a GK-module, by M(1) we denote the Tate

twist M ⊗ ε`. The above isomorphisms show the importance of the representation ρ
(1)
`,X

for an abelian variety X. Note that the Tate module representation σ` := ρ
(1)
`,X ⊗ ε

−1
` and

its deformation theory was instrumental in the proof of Shimura-Taniyama modularity

conjecture by Wiles, for a semistable elliptic curve X defined over the rationals.

1.2. Spectacular applications.

Weil conjectures. Let X be a smooth projective variety over the finite field K = Fp. Fix

a rational prime ` 6= p. Consider the congruence zeta function for X:

Z(X,T ) := exp(
∑
r≥1

|X(Fpr )|
T r

r
)

which by definition is a formal power series in the variable T. Let Frob ∈ GK=Gal(Fp/Fp)
denote the Frobenius automorphism induced by the pth power homomorphism. It follows

easily by the Lefschetz formula in `-adic cohomology that for every r ≥ 1

|X(Fpr )| =
∑
i≥0

(−1)iTr(ρ
(i)
`,X(Frobr)).

We denote by Pi(T ) := det(1 − ρ(i)
`,X(Frob)T ) the characteristic polynomial of the Q`-

linear map ρ
(i)
`,X(Frob) : Hi(XK ,Q`)→ Hi(XK ,Q`). It was proven by Grothendieck and

completed in the important case of Riemann conjecure for X by Deligne [11] that the

following statements hold.

• Rationality of zeta: The congruence zeta function

Z(X,T ) =
P1(T )P3(T ) . . . P2d−1(T )

P0(T )P2(T ) . . . P2d(T )
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is a rational function in Q(T ) which satisfies a functional equation.

• Riemann conjecture: For every i ≥ 0 the polynomial Pi(T ) has integral coefficients,

which are independent of ` 6= p, and an analogue of Riemann conjecture holds

for X/Fp: The inverse roots of the polynomial Pi(T ) have absolute value p
i
2 .

We have stressed the independence of ` of the coefficients of the polynomial Pi(T ). It is

a first manifestation we would like to point out of the independence of the prime ` of

cohomological properties of algebraic varieties.

Mordell conjecture. Let X be an abelian variety defined over a finitely generated exten-

tion K of Q. In 1983 Faltings proved in the impressive paper [14] the following crucial

properties of the Tate module representation

σ` : GK −→ Aut(T`(X)⊗Q`) ∼= Gl2d(Q`)

of the abelian variety X, which were conjectured in 70s by Tate.

• The representation σ` is semsimple.

• The natural homomorphism

Hom(X,X)⊗ Z` −→ HomZ`(T`(X), T`(X))GK

induced by sending any algebraic K-morphism X → X to the attached Z`-linear

map T`(X)→ T`(X), is an isomorphism of Z`-modules.

Using the above properties of representations σ` Faltings in [14] proved the conjecture

of Mordell from 1922 which says that every smooth projective curve C of genus g > 1

defined over a number field F has finite number of F -rational points.

2. Mumford-Tate conjecture.

2.1. On two conjectures of Serre. It is a natural and central question to what extent

the `-adic cohomology groups are independent of the auxiliary prime number `. There

is a variety of classical results on this question. For example, if L′ = L \ {p}, then by a

well-known corollary to the Riemann hypothesis for varieties over finite fields proved by

Deligne, the function

L′ → N, ` 7→ dimQ`(H
j(XK ,Q`))

is constant.

Assume now that K is a finitely generated subfield of C. It is then natural to consider

in addition to the data involved so far the more classical singular cohomology groups:

Hj
sing(X(C),Z/n) for n ∈ N, Hj

sing(X(C),Q) and the comparison theorem from [4] gives

isomorphisms

Hj(XK ,Z/n) ∼= Hj
sing(X(C),Z/n) and Hj(XK ,Q`) ∼= Hj

sing(X(C),Q)⊗Q Q`.

This can already be viewed as an `-independence result, because the Q-vector space

Hj
sing(X(C),Q) does not depend on `. To go further let us look at the images of the rep-

resentations ρ
(j)
`,X and ask for some kind of `-independence. Let us put V` = Hj(XK ,Q`),
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ρ` = ρ
(j)
X,` for ` ∈ L and define

G` := ρ`(GK),

G` := Zariski closure of G` in GLV` ,

G◦` := connected component of the neutral element in G`.

Note that G` and G◦` are algebraic groups over Q`. Serre proved (cf. [28]) that the kernel

of

GK
ρ`−→ G`(Q`)→ G`(Q`)/G

◦
` (Q`)

does not depend on `. This implies the existence of a finite extension Kconn/K such that

the Zariski closure of ρ`(G(K̄/Kconn)) equals G◦` . We define V := Hj
sing(X(C),Q). As

far as the algebraic groups G◦` are concerned there is the following conjecture (cf. [30]).

Conjecture 2.1. (Mumford-Tate-Serre Conjecture) There exists a (connected) reduc-

tive subgroup G/Q of GLV /Q, not depending on `, such that G◦` = G ×Q Spec(Q`) for

every ` ∈ L.

There is a natural candidate for such an algebraic group G/Q, namely the corresponding

motivic Galois group. This “conjecture of Mumford-Tate type” is a wide open problem,

though there is some evidence due to work of Serre, Ribet, Larsen-Pink, Zarhin-Moonen,

Chin, Hall, Banaszak-Gajda-Krasoń [5], [6], Vasiu, Hui, Arias-de-Reyna-Gajda-Petersen

[1], [2] and many others, mainly in the case of abelian varieties.

Let us assume now that there is an algebraic group G as above for the variety X and

value j under consideration. Choose a Z-lattice T in V (T = Hj
sing(X(C),Z)/(Torsion)

is a natural choice) such that T` := T ⊗ZZ` is a GK-equivariant Z`-lattice in V` for every

` ∈ L, and define G◦` (Z`) := G◦` (Q`)∩GLT`(Z`) where the intersection takes place inside

GLV`(Q`). One can then consider the so-called adelic representation

ρadelic : Gal(K/Kconn)
ρ−→
∏
`∈L

ρ`(Gal(K/Kconn))
i−→
∏
`∈L

G◦` (Z`) ⊂ G(Q⊗Z Ẑ)

where ρ is induced by the restricted representations ρ`|Gal(K/Kconn)→ GLV`(Q`). It is

natural to ask whether ρadelic has an open image (cf. [30, 10.6 ?]).

Conjecture 2.2. (Adelic Openness) The image of ρadelic is open if the corresponding

motive is maximal (cf. [30, 10.6 ?], for the details).

The adelic openness conjecture is a wide open problem, but surprisingly there is a recent

progress on the first task in the above setup, i.e., in considering the map ρ alone and

proving unconditionally that it has a large image. Serre’s recent paper [31] studied im(ρ)

in the important case where K is a number field, continuing part of his work on abelian

varieties over number fields back in the 80s. The paper [15] of Gajda and Petersen studied

im(ρ) in the case trdeg(K/Q) > 1. Together this gave a solution to conjecture [30, 10.1?]

of Serre in the case of motives attached to smooth projective varieties, and it answered a

question of Serre and Illusie (cf. [31, Section 3] and [19, 5.5]) at the same time. Preprints of

Böckle-Gajda-Petersen [7], Cadoret-Tamagawa [8] and the habilitation thesis of Petersen

follow this line of thought begun by Serre even further.
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2.2. Mumford-Tate for abelian varieties. For abelian varieties defined over number

fields, or more generally over finitely generated fields over their prime fields, one can say

more about images of the Galois representations and the Mumford-Tate conjecture. We

illustrate this by quoting few theorems from [5], [6] and [1], where authors investigated

the image of Galois `−adic and mod ` representations associated with the Tate module

of a simple abelian variety of type I, II and III in the Albert classification list. We use

Weil restriction functor RE/K of affine group schemes for a finite field extension E/K in

order to descibe the image of Galois representation in terms of linear algebraic groups.

Denote by

σ` : GK → GL(T`(A)),

σ0
` : GK → GL(V`(A))

σ` : GK → GL(A[`])

the Galois representations related to the Tate module T` = T`(A) of the abelian varieties

A over a finitely generated field K, where V`(A) = T`⊗Q` and A[`] = T`/`T`. We consider

Zariski closure G`, of the image of the representation σ0
` and the the image G(`) of the

representation σ`. We have a classical theorem of Serre (cf. [29]):

Theorem 2.1. Let A/K be an abelian variety over a finitely generated field of character-

istic zero with End(A) = Z and dim(A) = 2, 6 or odd. Then for almost all ` the image of

σ` is as large as possible, i.e., it equals the group of Z`−points of the group of symplectic

similitiudes GSp2g.

Methods modeled on the approach of Serre and based on Lie algebra technics enabled to

prove in [5] the following results.

Theorem 2.2 ([5], Thm. 6.9). Let A be a simple abelian variety over a number field K,

of type I or II with the endomorphism ring D = End (A) ⊗ Q with center E of degree

e = [E : Q] and d = [D : E] such that 2g = 2hed where h is odd. Then for ` big enough

we have equalities of group schemes:

(G`)
′ =

∏
λ|`

REλ/Q`(Sp2h)

(G(`))′ =
∏
λ|`

Rkλ/F`(Sp2h),

where G′ is the derived group scheme of G.

Theorem 2.3 ([5], Thm. 6.16). Let A be an abelian variety as in the last theorem. Then

for all `� 0, we have:

(σ`(GK))′ =
∏
λ|`

Sp2h(kλ),

(σ`(GK))′ =
∏
λ|`

Sp2h(Oλ)

where (σ`(GK))′ denotes the closure of (σ`(GK))′ in the natural (λ-adic in each factor)

topology of the group
∏
λ|` Sp2h(Oλ).
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Remark. In [6] similar (but more technically involved) theorems about Galois images

were obtained for a large class of abelian varieties of type III. The last two theorems

enabled verification of the Mumford-Tate for the investigated class of abelian varieties.

As a final application of the method an analogue of the open image theorem of Serre was

proven.

There is yet another way developed recently by Chris Hall [17] to compute the image of the

representation σ` for abelian varieties which is based on group theory, instead of theory

of Lie algebras. Using Hall’s method we proved in [1] together with Sara Arias-de-Reyna

the following result which works over fields of arbitrary characterisitic. In order to state

it we need a definition. We denote by N −→ SpecOv the Néron model of A and by N ◦v
the connected component of its special fibre. We say that an abelian variety A/K has

semistable reduction of toric dimension one at a place v of K, if there is an exact sequence

of group schemes over the residue field κ(v) = Ov/mv

1 −→ T −→ N o
v −→ B −→ 0

where T/κ(v) is a torus of dimension one and B/κ(v) is an abelian variety.

Example 2.4. Let f ∈ Z[x] be a monic square free polynomial of degree deg f = n ≥ 5.

Denote by Cf the smooth projective curve with an affine part the hyperelliptic curve

y2 = f(x). Let A = Jac(Cf ) denote the Jacobian variety. It was proven by Zarhin [32]

that if Gal(Spl(f)/Q) = Sn, then EndA = Z. Moreover the Jacobian variety A has

semistable reduction of toric diminesion one at a rational prime p, if the image f̄ of f in

Fp[x] admits a factorization f̄ = f1f2 in Fp[x], with coprime polynomials f1, f2 ∈ Fp[x],

such that f1 = (x− α)2 with α ∈ Fp, and f2 is a square-free polynomial of degree n−2.

Note that Kowalski proved in [17] using sieves that most polynomials f ∈ Z[x] have a

prime p with the above properties.

Theorem 2.5 (Arias-de-Reyna, Gajda, Petersen, [1]). Let A/K be an abelian variety

over a finitely generated field of arbitrary characteristic with End(A) = Z and such that

A has semistable reduction of toric dimension one. Then A has big monodromy, i.e., for

almost all ` the image of σ` contains the group of Z`−points of the group Sp2g.

2.3. Application to Geyer-Jarden conjecture. We applied Theorem 2.5 to prove a

new result towards the Geyer-Jarden conjecture of 1978. Denote by Ksep the separable

closure of K. For a positive integer e and for σ = (σ1, σ2, . . . , σe) in the group GeK =

GK×GK× . . .×GK , we denote by Ksep(σ) the subfield in Ksep fixed by σ1, σ2, . . . , σe.

There exists a substantial literature on arithmetic properties of the fields Ksep(σ). In

particular, the Mordell-Weil groups A(Ksep(σ)) have been already studied. We considered

the torsion part of the groups A(Ksep(σ)). In order to recall the Geyer-Jarden conjecture,

we agree to say that a property A(σ) holds for almost all σ ∈ GeK , if A(σ) holds for all

σ ∈ GeK , except for a set of measure zero with respect to the (unique) normalized Haar

measure on the compact group GeK . In [16] Geyer and Jarden proposed the following

conjecture on the torsion part of A(Ksep(σ)).

Conjecture 2.3. Let K be a finitely generated field. Let A be an abelian variety defined

over K.
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a) For almost all σ ∈ GK there are infinitely many prime numbers ` such that the

group A(Ksep(σ))[`] of `−division points is nonzero.

b) Let e ≥ 2. For almost all σ ∈ GeK there are only finitely many prime numbers `

such that the group A(Ksep(σ))[`] of `−division points is nonzero.

It is known due to the work of Jacobson and Jarden [20] that for all e ≥ 1, almost all

σ ∈ GeK and all primes ` the group A(Ksep(σ))[`∞] is finite. This was formerly part (c) of

the conjecture. Moreover Conjecture 2.3 is known for elliptic curves [16]. Part (b) holds

true provided char(K) = 0 (see [20]). Zywina [33] proves part (a) in the special case

where K is a number field, strengthening results of Geyer and Jarden. As for today, for

an abelian variety A of dimension ≥ 2 defined over a finitely generated field of positive

characteristic, parts (a) and (b) of Conjecture 2.3 are open and part (a) is open over a

finitely generated transcendental extension of Q. We prove the Geyer-Jarden conjecture

for abelian varieties of Theorem 2.5.

Theorem 2.6 (Arias-de-Reyna, Gajda, Petersen, [2]). Let K be a finitely generated field

and A/K an abelian variety with big monodromy. Then the Conjecture 2.3 of Geyer and

Jarden holds true for A/K.

Surprisingly enough, the most difficult part in the proof of Theorem 2.6 is the case (a)

of the Conjecture 2.3 for abelian varieties with big monodromy, when char(K) > 0. The

method of our proof relies in this case on the Borel-Cantelli Lemma of measure theory

and on a delicate counting argument in the group Sp2g(F`).

3. Main results.

3.1. Statements. Our main results concern research initiated by Serre [31] and contin-

ued by us in [15], by Cadoret-Tamagawa [8], Böckle-Gajda-Petersen [7] and by the second

author in his habilitation thesis [26]. In the sequel we call a family of homomorphisms

(ρ` : G → G`)`∈L′ of locally compact topological groups with index set L′ ⊂ L almost

independent if there exists an open subgroup H ⊂ G such that ρ(H) =
∏
`∈L′ ρ`(H)

where ρ : G→
∏
`∈L′ G` ist the homomorphism induced by the ρ`. The main results are

as follows.

Theorem 3.1 (Serre, Gajda-Petersen, cf. [31], [15]). Let K be a finitely generated field

of characteristic zero. Let X/K be a separated algebraic scheme and j ∈ N. For ` ∈ L let

V` = Hj(XK ,Q`) and let

ρ` : Gal(K/K)→ GLV`(Q`)

be the corresponding Galois representation. Then the family (ρ`)`∈L is almost indepen-

dent.

The following independence theorem concerns the case where the ground field is a geo-

metric function field, i.e., a field K containing an algebraically closed subfield k such that

K/k is finitely generated. It was obtained independently by Cadoret-Tamagawa [8] and

Böckle-Gajda-Petersen [7]. Part b) carries a considerable amount of information about

the images of the representations.
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Theorem 3.2 (Böckle-Gajda-Petersen, Tamagawa-Cadoret, cf. [7], [8]). Let K be a ge-

ometric function field of characteristic p ≥ 0 and L′ = L \ {p}. Let X/K be a separated

algebraic scheme. For ` ∈ L′ let ρ` be the representation of Gal(K/K) on Hj(XK ,Q`).
There exists a finite Galois extension K ′/K and a constant c ∈ N with the following

properties.

a) The family (ρ`)`∈L′ is almost independent.

b) For every ` ∈ L′ the group H` := ρ`(Gal(K/K ′)) is generated by its `-Sylow sub-

groups and it has a normal series

H` . N` . P` . {e}

with the following composition factors.

i) The group H`/N` is a finite product of finite simple groups of Lie type in

characteristic `.

ii) The group N`/P` is abelian of order prime to ` and |N`/P`| ≤ c.

iii) The group P` is pro-`.

Illusie suggested some time ago to use the theory developed so far, combined with uniform

constructability and semistability results recently proved by Orgogozo [25], in order to

prove a relative version for families of sheaves over arithmetic schemes. Let FT D be the

category of all separated reduced and irreducible Spec(Z)-schemes S which are of finite

type and dominant over Spec(Z). Let S ∈ FT D, let K = R(S) be the field of rational

functions on S and let x̄ : Spec(K)→ S be the geometric generic point of S afforded by

the choice of algebraic closure of K. Let F` be an étale sheaf of F`-vector spaces on S for

every ` ∈ L. We call such a family (F`)`∈L almost independent, if the family (F`,§̄)`∈L
of stalks, viewed as a family of representations of Gal(K/K), is almost independent in

the above sense. We define a certain condition (Ram) for families (F`)`∈L as above which

is roughly a “potential uniform constructibility” and “potential semistability” condition.

in a certain sense. The family (F`)`∈L of constant sheaves on S does satisfy condition

(Ram).

Theorem 3.3 (Petersen, cf. [26]). Let S ∈ FT D. For every ` ∈ L let F` be an étale

sheaf of F`-vector spaces on S.

a) If the family (F`)`∈L satisfies condition (Ram), then (F`)`∈L is almost independent.

b) If the family (F`)`∈L satisfies condition (Ram) and f : S → S′ is a morphism

in FT D, then for every j ∈ N the families (Rjf∗F`)`∈L and (Rjf!F`)`∈L satisfy

condition (Ram).

Remark. The main merit of Theorem 3.3 is to give more flexibility on the level of

coefficients than Theorem 3.1. For example, if f : S → S′ and g : S′ → S′′ are two

morphisms in FT D, then for i, j ∈ N the family of E2-terms of the Leray spectral

sequence

(Rig∗R
jf∗F`)`∈L

is almost independent by Theorem 3.3. It is an interesting question to prove a version of

Theorem 3.3 for families of Q`-sheaves instead of families of F`-sheaves. The thesis [26]
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restricted attention to the technically simpler case of finite coefficients only. Furthermore

it is desirable to prove a version that does not assume S to be dominant over Z; for

example S should well be allowed to be an Fp-variety. The final result of this type should

contain Theorems 3.1 and 3.2 as a special case.

Remark. The independence results mentioned so far have applications in field arith-

metic. Some such applications have been worked out in [26], and it is possible that one

can work out more. For example it seems promising to apply the new independence re-

sults on part a) of the Geyer-Jarden conjecture about torsion of abelian varieties (cf.

[16]). Part a) of this conjecture has been solved by Zywina [33] for abelian varieties over

number fields. It seems plausible that one can prove part a) in the case of abelian varieties

over finitely generated fields of characteristic zero combining the methods of Zywina [33]

with Theorem 3.2. One can speculate that Theorem 3.2 might help to solve Part a) of

the conjecture in positive characteristic.

3.2. Proof sketch of Theorem 3.2.

Group theory. Let ` be a rational prime and let d be a positive integer. We define the

set Jor(d) of Jordanian groups as the set of finite groups H that have a normal abelian

subgroup N of index at most d. The subset of Jor(d) of those H for which N has order

prime to ` is denoted by Jor`(d). For a positive integer c define the set Σ`(c) of profinite

groups M such that M has normal open subgroups P ⊂ I ⊂ M such that P is a pro-`

group, I/P is a finite abelian group of order prime to ` with the index [I : P ] ≤ c, and

M/I is a product of finite simple groups of Lie type in characteristic `. As the starting

point for the proof of Theorem 3.2 we use the following description of closed subquotients

of Gln(Q`), which we deduce from the main result of the paper [23] of Larsen and Pink.

Proposition 3.4. For any positive integer n there exists a constant J(n) such that for

all rational primes ` and any closed subquotient G` of Gln(Q`) there is a short exact

sequence of profinite groups

1 −→M` −→ G` −→ H` −→ 1

such that M` ∈ Σ`(2
n−1) and H` ∈ Jor(J(n)).

Bounding ramification. In the proof of Theorem 3.2 we need deep results on the ram-

ification behavior of the representations ρ`. The following proposition summarizes the

information we need.

Proposition 3.5. Let k be a perfect field of characteristic p ≥ 0, S/k a smooth k-variety,

K the function field of S and X/K a separated algebraic scheme. For ` ∈ L \ {p} let ρ`
be the representation of Gal(K) on Hj(XK ,Q`). There exists a dense open subscheme

U of S, a smooth proper k-variety V , a dense open subscheme V of V and an alteration

V → U such that, if we denote by E the function field of V , the following holds true.

a) For all ` ∈ L \ {p} the representation ρ` factors through π1(U) (and consequently

ρ`|Gal(E) factors through π1(V )).

b) For every ` ∈ L \ {p} and every discrete valuation v of K which is localized at a

codimension 1 point of V the image ρ`(I(v)) of the inertia group I(v) of v is a
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pro-` group.

This proposition is established in [7] making use of the base change theorems, de Jong’s

alteration technique, the different notions of tameness from Kerz-Schmidt [22] and two

results of Deligne: from [13] and from [11].

Remark 3.6. If in the situation of Proposition 3.5 ρ`(Gal(K)) is of order prime to ` for

every ` ∈ L \ {p}, then ρ`|Gal(E) factors through π1(V ) because of the purity of the

branch locus.

Finiteness results for fundamental groups. Let us call a (possibly infinite) Galois exten-

sion Ω/K Jordanian if there exists an integer d and a family (Ki)i∈I of Galois extensions

of K inside Ω such that Gal(Ki/K) ∈ Jor(d) and Ω =
∏
i∈I Ki. We shall make use of

the following finiteness theorem for Jordanian extensions of function fields with restricted

ramification.

Proposition 3.7. Let k be a prime field. Let S/k be a smooth variety. If k is finite,

assume that S/k is proper. Let K/k be the function field of S. Let Ω/K be a Jordanian

extension which is unramified along S. Then kΩ/kK is a finite extension.

The proof of Proposition 3.7 makes use of the fact that π1(Sk) is a finitely generated

profinite group and of central results of Katz and Lang in geometric class field theory.

Putting things together. We shall now give a tentative sketch of proof for Theorem 3.2

in the special case where K is a finitely generated extension of Fp. This special case is

particularly important. Theorem 3.2 in the case p > 0 is derived from this special case

in [7], and the proof in the case p = 0 follows similar lines being in fact easier. In the

special case under consideration there exists a finitely generated extension K0/Fp and a

separated algebraic K0-scheme X0 such that K = FpK0 and X = X0 ⊗ Spec(K). Hence

ρ` extends to a representation of Gal(K0) on Hj(XK ,Q`) and we denote this extension

again by ρ`.

By Proposition 3.5 there exists, after replacing K0 by a finite extension, a finite extension

k/Fp inside K0, a smooth proper geometrically connected k-variety V with function field

K0 and a dense open subscheme V in V such that ρ` factors through π1(V ) and such

that for every ` ∈ L \ {p} and every discrete valuation v of K which is localized at a

codimension 1 point of V the group ρ`(I(v)) is a pro-` group.

Let G` = ρ`(Gal(K0)) and let K` be the fixed field of G` inside K. By Proposition 3.4

there exist constants J, c ∈ N (not depending on `) such that for every ` ∈ L \ {p} there

exists a normal subgroup M` in G` such that M` ∈ Σ`(c) and G`/M` ∈ Jor(J). For every

` > J the extension KM`

` /K0 is unramified along V . Let Ω =
∏
`∈L\{p}K

M`

` . It follows

from Proposition 3.7 that K ′ := kΩ is a finite extension of K. By construction we see

that

ρ`(Gal(K ′)) / M` ∈ Σ`(c) for all ` ∈ L′.

Using Goursat’s Lemma, one can prove that the class Σ`(c) is closed under taking normal

subgroups, hence ρ`(Gal(K ′)) ∈ Σ`(c), for all ` ∈ L′.



12 W.GAJDA AND S.PETERSEN

After replacing K ′ by a finite extension we can assume in addition that ρ`(Gal(K ′)) is

pro-` for all ` 6∈ {2, 3}. An additional argument, based on the fact that π1(Sk) is finitely

generated and some group theory proves, that we can also assume that ρ`(Gal(K ′)) is

generated by its `-Sylow subgroups. This proves part (b) of Theorem 3.2 in the special

case under consideration. Part (a) of this theorem follows then from its part (b) with the

help of the following classical theorem of E. Artin from group theory. Let Lie` denote

the class of all finite simple groups of Lie type in characteristic `. For example the list of

orders of groups in Lie5 begins with

60, 7800, 126000, 976500, . . .

and the list for Lie7 begins with

168, 58800, 1876896, 56633616, . . .

cf. [31], Section 6.

Theorem 3.8 (E.Artin, [3], [21]). If `1 and `2 are two distinct rational primes bigger

than 3, then the classes Lie`1 and Lie`2 are disjoint.

3.3. Questions: Openness in families. Another line of investigation concerns the

variation of the images of the corresponding representations in families of varieties. Let k

be a Hilbertian field and S/k a (base) variety with function field K = k(X). Let X → S

be a family of algebraic schemes. For s ∈ S we denote by Xs the fibre of X over S. Fix

j ∈ N. Let ρ`,s be the representation of Gk(s) on Hj(X
s,k(s)

,Q`) where Gk(s) is the Galois

group of the residue field k(s). Let ξ be the generic point of S, X = Xξ and ρ` = ρ`,ξ. It

is natural to compare the cohomology of the fibres Xs to the cohomology of the generic

fibre X; the generic base change theorem (Katz-Laumon, Illusie) tells us that there exists

an open subset U ⊂ S such that

Hj(X
s,k(s)

,Q`) ∼= Hj(XK ,Q`)

for every ` ∈ L′ and every s ∈ U . Having this information at hand one may look for

equivariant versions and compare the image of ρ`,s with the image of ρ`. We can view

ρ`,s(Gk(s)) as a subgroup of ρ`(GK). We define the “good loci” for the specialization to

be

Sgood(X , `) = {s ∈ S : ρ`,s(Gk(s)) has finite index in ρ`(GK)}
Sgood(X ) = {s ∈ S : ρ`,s(Gk(s)) has finite index in ρ`(GK) for all `}.

A classical Frattini argument sketched by Serre in [27] (in a special case, but the argument

works in general) shows that Sgood(X , `) is a Hilbertian set. The motivic philosophy

predics that Sgood(X , `) should be independent of `. As a consequence one would expect,

that Sgood(X ) is Hilbertian as well. One may even look at the good locus of specialization

for the adelic representations

Sad(X ) = {s ∈ S :
∏
`

ρ`,s(Gk(s)) is open in
∏
`

ρ`(GK)}.

The following catalogue of question about variational adelic openness seems very natural.

Question 3.1. Assume that K is an infinite finitely generated field. Let S(d) be the set

of all closed points of S of degree ≤ d.
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a) Can we prove that the good locus Sgood(X , `) is big in the sense that S(d) \Sgood(X , `)
is finite for all d ?

b) Is it true that Sgood(X , `) does not depend on ` ∈ L′? This would in particular imply

that S(d) \ Sgood(X ) is finite for all d.

c) What can we say about Sad(X ) ?

Remark. Important work of Cadoret and Tamagawa [9] answers question a) affirma-

tively if char(k) = 0 and dim(S) = 1. Question b), which may seem surprising at a

first glance, has an affirmative answer if char(k) = 0, dim(S) = 1 and X is an abelian

scheme due to work of Hui (cf. [18]). Recent work of Cadoret (cf. [10]) settles question

c) if char(k) = 0, dim(S) = 1 and X is an abelian scheme. One would like to establish

analogous results in the special case where char(k) > 0, and it seems plausible to us that

this might be possible. The main problem in this area is to find a good replacement for

the Mumford-Tate group in case when the base field is of positive characteristic. This is

an interesting path of research which shall be followed in future.
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