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Abstract. Let A be an abelian variety defined over a number field F . Let P be a
point in the Mordell-Weil group AðFÞ and H a subgroup of AðFÞ. We consider the follow-
ing local-global principle which originated with the support problem of Erdös for the inte-
gers: the point P belongs to the group H, if for almost all primes v of F , the point P (modulo

v) belongs to the group H (modulo v). We prove that the principle holds for any abelian va-
riety A, if H is a free submodule and the point P generates a free submodule of AðFÞ over
the ring EndF A.

1. Introduction

The main result of this paper is the following

Theorem A (Thm. 4.1, Cor. 4.5). Let A be an abelian variety defined over a number

field F. Let O :¼ EndF A denote the ring of F-endomorphisms of A. Let l be a prime number

such that the Tate module TlðAÞ of A is integrally semi-simple (cf. Definition 3.1). Let L̂L be a

submodule of AðFÞnZl which is free over the ring OnZl , where Zl denotes the ring of

l-adic integers. Let P̂P A AðFÞnZl be a point which generates a free OnZl -submodule of

AðFÞnZl . Then the following local-global principle holds for A, L̂L and P̂P:

The point P̂P is contained in L̂L, if and only if, the point P̂P (modulo v) is contained in the

group L̂L (modulo v), for almost all primes v of F.

The same local-global principle holds for any A, l and P̂P as above, and for any L̂L which

is torsion-free over the ring OnZl , provided the ring OnQl is a division algebra and OnZl

is a maximal order.

We prove that any abelian variety defined over F is isogeneous (over F ) to an abelian
variety with all Tate modules integrally semi-simple cf. Proposition 3.5. This implies the
following

Theorem B (Theorem 5.1). Let A be an abelian variety defined over a number field F.

Set O :¼ EndF A. Let L be a free O-submodule of AðFÞ. Let P be a point in AðFÞ, which
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generates a free O-submodule of AðFÞ. Then the following local-global principle holds. The

point P is contained in the module L, if and only if, the point P (modulo v) is contained in

the module L (modulo v), for almost all primes v of F.

The question of the local-global principle for detecting by reductions if a point be-
longs to a given subgroup of the Mordell-Weil group of an abelian variety originated with
the support problem of Erdös. This question was formulated by the first author in 2002, in
a letter to Kenneth Ribet. For an abelian variety A with O ¼ Z and dimA ¼ 2; 6 or an odd
integer, the local-global principle was proven in [1], Theorem 4.2, if H ¼ L is a free sub-
group and P is a non torsion point of the Mordell-Weil group AðFÞ. Note that the assump-
tion on the dimension of the variety in loc. cit. can be dropped. In order to see this, it suf-
fices in the proof of [1], Theorem 3.12, to apply the stronger [2], Proposition 2.2, instead of
[1], Theorem 3.1. More generally, if A is an abelian variety with a commutative ring of en-
domorphisms, then due to a result of Thomas Weston (cf. [15], Theorem) the condition P

(modulo v) belongs to H (modulo v), for almost all v, implies the relation P A H þ AðFÞtors,
for any subgroup H of AðFÞ and P A AðFÞ non torsion over Z. One should note however,
that neither the method of the proof of [1], Theorem 4.2, nor of the Theorem of Weston
seem to extend to abelian varieties with non commutative ring of F -endomorphisms.

Our proof of Theorem A is based on methods of Kummer theory for abelian varieties
and Galois cohomology developed in papers [1] and [2], augmented by an idea of Larsen
and Schoof used in [9]. The combination of these methods enabled us to treat the problem
of detecting linear dependence by reductions for any abelian variety with no extra assump-
tions on the ring of endomorphisms nor on the dimension. When this paper was revised,
we learned that Antonella Perucca proved a similar result to our Theorem B by a di¤erent
method cf. [10].

The organization of the rest of the paper is as follows. In Section 2 we introduce nec-
essary notation and basic definitions from Kummer theory for abelian varieties developed
by Ribet in [13]. In Section 3, following [9], we discuss the notion of integrally semi-simple
Galois modules. The proof of Theorem A is contained in Section 4. In the last section of
the paper we prove Theorem B and collect few corollaries which the reader may find of in-
dependent interest. In particular, Corollary 5.6 generalizes to isogeny classes of abelian va-
rieties the solution of the multilinear version of the support problem of Erdös obtained by
Stefan Barańczuk in [3].

We would like to thank Grzegorz Banaszak for stimulating discussions and for some
help with an argument in the proof of Theorem 4.1. W.G. would like to thank John Cre-
mona, Gerhard Frey, Christian Kaiser and Don Zagier for helpful comments and remarks
concerning the results of this work.

Finally, we greatfully acknowledge the work of two anonymous referees whose critical
reports helped us to strengthen the results and to improve the exposition.

2. Kummer theory for abelian varieties

Preliminaries on Galois cohomology. Let A be an abelian variety of dimension g, de-
fined over a number field F . We denote by O :¼ EndF A the ring of F -endomorphisms of A.
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For a prime number l, let rl : GF ! Gl2gðZlÞ be the representation of the absolute Galois
group GF :¼ GalðF=FÞ, which is associated with the Tate module of A at l. For kf 1,
we denote by rl k : GF ! Gl2gðZ=l kÞ the residual representation attached to the action of
GF on torsion points A½l k� :¼ AðFÞ½l k�. We put VlðAÞ :¼ TlðAÞnQl . Define the groups:
Hlk :¼ ker rl k , Hly :¼ ker rl , Gl k :¼ Im rl k and Gly :¼ Im rl and the fields of division
points on A: Fl k :¼ F H

l k and Fly :¼ F Hly .

Consider the long exact sequence in Galois cohomology

H 0
�
GF ;AðFÞ

�
�!�l

k

H 0
�
GF ;AðFÞ

�
�!d H 1ðGF ;A½l k�Þ �!

induced by the Kummer exact sequence

0 �! A½l k� �! AðFÞ �!�l
k

AðFÞ �! 0:

The boundary homomorphism d induces

fðkÞ : AðFÞ=l kAðFÞ ,! H 1ðGF ;A½l k�Þ;

for H 0
�
GF ;AðFÞ

�
¼ AðFÞ. By definition of d (cf. [5], p. 97):

fðkÞ
�
Pþ l kAðFÞ

�
ðsÞ ¼ sðQÞ �Q; where P A AðFÞ; s A GF and Q A AðFÞ

is a point such that l kQ ¼ P. There are commutative diagrams

AðFÞ=l kAðFÞ K��!fðkÞ

H 1ðGF ;A½l k�Þ???y�l ???yH 1ðGF ;�lÞ

AðFÞ=l k�1AðFÞ K��!fðk�1Þ

H 1ðGF ;A½l k�1�Þ

ð2:1Þ

which after passing to the inverse limit with k give a monomorphism

AðFÞnZ Zl ,! H 1
�
GF ;TlðAÞ

�
;ð2:2Þ

(note that AðFÞnZl ¼ lim � AðFÞ=l kAðFÞ, by finite generation of the Mordell-Weil group

AðFÞ, and lim � H 1ðGF ;A½l k�Þ ¼ H 1
�
GF ;TlðAÞ

�
, by finiteness of H 0ðGF ;A½l k�Þ). Consider

the restriction map in Galois cohomology:

res : H 1
�
GF ;TlðAÞ

�
! H 1

�
Hly ;TlðAÞ

�Gly ;ð2:3Þ

induced by the embedding Hly ,! GF . The fixed point set on the right-hand side of
(2.3) is computed with respect to the action induced via the exact sequence of profinite
groups:

0! Hly ! GF ! Gly ! 0:
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Since Hly acts trivially on TlðAÞ by definition, we have:

H 1
�
Hly ;TlðAÞ

�Gly ¼ HomGly

�
Hly ;TlðAÞ

�
:

Lemma 2.4. The restriction map (2.3) has a finite kernel.

Proof. By the inflation-restriction sequence [5], p. 100:

0 �! H 1
�
Gly ;TlðAÞHly

�
�!inf H 1

�
GF ;TlðAÞ

�
�!res H 1

�
Hly ;TlðAÞ

�Gly

we get kerðresÞ ¼ H 1
�
Gly ;TlðAÞHly

�
¼ H 1

�
Gly ;TlðAÞ

�
. On the other hand

H 1
�
Gly ;TlðAÞ

�
nZ Z

1

l

� �
¼ H 1 Gly ;TlðAÞnZ Z

1

l

� �� �
¼ H 1

�
Gly ;VlðAÞ

�
where the last group vanishes due to the theorem of Serre [14], Corollary 1, p. 734. Hence,
kerðresÞ is a torsion group. The lemma follows, since the Galois cohomology group
H 1
�
GF ;TlðAÞ

�
is a finitely generated Zl-module. r

Definition 2.5. Define the homomorphism

f : AðFÞnZl ! HomGly

�
Hly ;TlðAÞ

�
;

by the composition of maps (2.2) and (2.3).

Lemma 2.6. For every prime l: ker f ¼ AðFÞtors nZl . In particular, the group ker f is

finite.

Proof. Clearly HomGly

�
Hly ;TlðAÞ

�
HHom

�
Hly ;TlðAÞ

�
, but TlðAÞ is a free Zl-

module, hence HomGly

�
Hly ;TlðAÞ

�
is a free Zl-module. Let

P
j

Pj n aj A AðFÞtors nZl ,
and let n A N, be such that nPj ¼ 0 for every j. Then

0 ¼ f

�P
j

nPj n aj

�
¼ nf

�P
j

Pj n aj

�
A HomGly

�
Hly ;TlðAÞ

�
;

so f

�P
j

Pj n aj

�
¼ 0, and

P
j

Pj n aj A ker f. To finish the proof apply Lemma 2.4, and

use the equality
�
AðFÞnZl

�
tors
¼ AðFÞtorsnZl . r

Kummer maps and reductions. Let L̂L be a finitely generated, free Ol :¼ OnZl-
submodule of AðFÞnZl . All modules over the ring O (respectively, over Ol) considered in
this paper are by definition left O-modules (resp., left Ol-modules). For P̂P A AðFÞnZl and
k A N, define the Kummer map

f
ðkÞ
P̂P

: Hlk ! A½l k�ð2:7Þ
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by f
ðkÞ
P̂P
ðsÞ ¼ sðQ̂QÞ � Q̂Q, where Hlk ¼ GðF=Fl kÞ and Q̂Q A AðFÞnZl is a point such that

l kQ̂Q ¼ P̂P. It is easy to check that the map (2.7) does not depend on the choice of the point

Q̂Q. For the rest of the paper, any point Q̂Q such that l kQ̂Q ¼ P̂P will be denoted by
1

l k
P̂P.

Remark 2.8. Note that, if P A AðFÞ, then f
ðkÞ
P̂P
¼ resðkÞ

�
fðkÞ
�
Pþ l kAðFÞ

��
, where

P̂P ¼ Pn 1 and resðkÞ : H 1ðGF ;A½l k�Þ ! H 1ðHlk ;A½l k�ÞGl k ¼ HomG
l k
ðHlk ;A½l k�Þ is the re-

striction map in Galois cohomology.

Let us fix a basis P̂P1; P̂P2; . . . ; P̂Pr of the module L̂L over the ring Ol . We define the homo-

morphism: FðkÞ : Hlk !
Lr
i¼1

A½l k� by FðkÞ ¼ ðfðkÞ
P̂P1
; f
ðkÞ
P̂P2
; . . . ; f

ðkÞ
P̂Pr
Þ. There are commutative di-

agrams

Hlk ���!f
ðkÞ
P̂P

A½l k�???y ???y�l
Hl k�1 ���!f

ðk�1Þ
P̂P

A½l k�1�

which after passing to the inverse limit with k give the homomorphism

fP̂P : Hly ! TlðAÞ:ð2:9Þ

Observe that by Remark 2.8, for any P̂P A AðFÞnZl , we have fP̂P ¼ fðP̂PÞ. Let

F : Hly !
Lr
i¼1

TlðAÞ be defined as F ¼ ðfP̂P1
; . . . ; fP̂Pr

Þ.

Proposition 2.10. The image of F is an open subset of
Lr
i¼1

TlðAÞ with respect to the

l-adic topology.

Proof. [1], Lemma 2.13.

For a prime v of good reduction for A, and for a prime number l, we denote by r̂rv the
map rv nZl : AðFÞnZl ! AvðkvÞl-torsion, where kv :¼ OF=v is the residue field at v, and
rv : AðFÞ ! AvðkvÞ is the reduction map at v.

Proposition 2.11. Let L̂L be a free Ol -submodule of AðFÞnZl . There exists a set P of

prime ideals of the ring OF of algebraic integers of F , such that P has positive density and

r̂rvðL̂LÞ ¼ 0, for every v A P.

Proof. The proof is similar to the proof of [2], Proposition 2.2. For the convenience
of the reader we give here the argument for the current setting, i.e., for the group AðFÞnZl .

In order to simplify notation we put: Tl ¼ TlðAÞ, T r
l ¼

Lr
i¼1

Tl , A½m�r ¼
Lr
i¼1

A½m� and

AvðkvÞl :¼ AvðkvÞl-torsion ¼ AvðkvÞnZl . We fix an Ol-basis P̂P1; P̂P2; . . . ; P̂Pr of the module L̂L.

Define the fields Fl k
1

l k
L̂L

� �
:¼ F kerFðkÞ and Fly

1

ly
L̂L

� �
:¼ F kerF. Consider the following

commutative diagram:
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G

 
Fly

1

ly
L̂L

� �
=Fly

! ���! T r
l =l

mT r
l???y ???y

G

 
Fl kþ1

1

l kþ1
L̂L

� �
=Fl kþ1

! ���! ðA½l kþ1�Þr=lmðA½l kþ1�Þr???y ???y
G

 
Fl k

1

l k
L̂L

� �
=Fl k

! ���! ðA½l k�Þr=lmðA½l k�Þr

where the horizontal maps are induced by Kummer maps F, Fðkþ1Þ, FðkÞ and m A N such
that l mT r

l H ImF. The number m exists by Proposition 2.10. For kfm, the images of the
homomorphisms

G

 
Fl k

1

l k
L̂L

� �
=Fl k

!
! ðA½l k�Þr=l mðA½l k�Þr

and

G

 
Fl kþ1

1

l kþ1
L̂L

� �
=Fl kþ1

!
! ðA½l kþ1�Þr=l mðA½l kþ1�Þr

are isomorphic groups. Hence, the homomorphism

G

 
Fl kþ1

1

l kþ1
L̂L

� �
=Fl kþ1

!
! G

 
Fl k

1

l k
L̂L

� �
=Fl k

!
is surjective, so

Fl k
1

l k
L̂L

� �
XFl kþ1 ¼ Fl k ;

for kfm. For such k we have the following tower of fields:

Fl kþ1
1

l k
L̂L

� �

Fl k
1

l k
L̂L

� �
Fl kþ1

Fl k

F

id h

6 Gajda and Górnisiewicz, Linear dependence

(AutoPDF V7 29/7/08 15:10) WDG Tmath J-1878 CRELLE, HC1: elo 29/7/08 pp. 1–15 1878_5393 (p. 6)



By the theorem of Bogomolov ([4], Corollary 1, p. 702), for k large enough, there exists a
nontrivial homothety h in the image of rl , which acts on Tl by multiplication by 1þ l ku0,
for u0 A Z�l . We choose

g A G

 
Fl kþ1

1

l k
L̂L

� �
=Fl k

!
HG

 
Fl kþ1

1

l k
L̂L

� �
=F

!

such that gj
F
l k

�
1

l k
L̂L
� ¼ id, gjF

l kþ1
¼ h. By the Chebotarev theorem (cf. [8], Theorem 10.4,

p. 217) there exists a set P of primes of OF , with positive density, such that, for v A P, the

Frobenius element Frv in the extension Fl kþ1
1

l k
L̂L

� �
=F equals g. For such a v we fix an ideal

w in O
F
l kþ1

�
1

l k
L̂L
� over v. Consider the commutative diagram

AðFÞnZl ���!r̂rv AvðkvÞl???y ???y
A

 
Fl kþ1

1

l k
L̂L

� �!
nZl ���!r̂rw AwðkwÞl :

The vertical maps in this diagram are natural injections. Now we proceed as in Step 4 of
the proof of Proposition 2.2 in [2]. Let l ci be the order of r̂rvðP̂PiÞ A AvðkvÞl , where ci f 0 and

i A f1; . . . ; rg. The point Q̂Qi :¼
1

l k
P̂Pi A A

 
Fl kþ1

1

l k
L̂L

� �!
nZl such that l kQ̂Qi ¼ P̂Pi, maps to

the point r̂rwðQ̂QiÞ A AwðkwÞl of order l ciþk, because l ciþkr̂rwðQ̂QiÞ ¼ 0. By the choice of v we
get

h
�
r̂rwðQ̂QiÞ

�
¼ ð1þ l ku0Þr̂rwðQ̂QiÞ;

where h is the homothety chosen before. The choice of v implies also that r̂rwðQ̂QiÞ A AvðkvÞl ,
hence h

�
r̂rwðQ̂QiÞ

�
¼ r̂rwðQ̂QiÞ, so l kr̂rwðQ̂QiÞ ¼ 0. This is possible only if ci ¼ 0. Hence, r̂rvðP̂PiÞ is

zero. r

Lemma 2.12. Let P̂P A AðFÞnZl be such that the Ol -module Ol P̂P generated by P̂P is

free. Let k A N and let Q̂Q A AðFÞnZl be such that l kQ̂Q ¼ P̂P. Let Fl k
1

l k
P̂P

� �
:¼ F

ker f
ðkÞ
P̂P ,

where f
ðkÞ
P̂P

is the Kummer homomorphism (2.7). Let wF l be a nonzero prime ideal of OF
l k
at

which A has good reduction. Then the following two conditions are equivalent:

(1) r̂rwðP̂PÞ A l kAwðkwÞ, where kw ¼ OF
l k
=w.

(2) FrwðQ̂QÞ ¼ Q̂Q, where Frw A Gal

 
Fl k

1

l k
P̂P

� �
=Fl k

!
is the Frobenius automorphism

at w.

The proof of Lemma 2.12 is an easy exercise which we leave for the reader.
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3. Integrally semi-simple GF -modules

In this section we collect material on integrally semi-simple Galois modules following
[9], Section 4. The main technical result in this section is Proposition 3.6, which generalizes
[9], Lemma 4.5.

Definition 3.1. Let T be a free Zl-module equipped with a continuous action of the
Galois group GF and let V ¼ T nQl be the associated rational Galois representation. We
say that the module T is integrally semi-simple, if for every GF -subrepresentation W HV

the exact sequence

0! T XW ! T ! T=T XW ! 0

of Zl ½GF �-modules splits.

Lemma 3.2. Let V be a finitely dimensional Ql -vector space with a continuous action

of GF such that the associated representation is semi-simple. There exists a lattice T HV

which is an integrally semi-simple GF -module.

Proof. Since every GF -invariant subspace W admits a decomposition into iso-
typic components corresponding to the isotypic decomposition of V , without loss of
generality we can assume that V ¼ V1nQl

Qk
l , for an irreducible representation V1 of

GF , and k A N. Since GF is compact, there exists a GF -stable lattice T1 HV1. Let
T ¼ T1 nZl

Zk
l HV1 nQl

Qk
l . We check that T is integrally semi-simple. Let then W HV

be a subrepresentation of V . Then W ¼ V1 nQl
W0, for a subspace W0 of Q

k
l . Hence

W XT ¼ ðV1 nQl
W0ÞX ðT1 nZl

Zk
l Þ ¼ ðT1nZl

W0ÞX ðT1 nZl
Zk
l Þ ¼ T1 nZl

ðZk
l XW0Þ:

Consider the exact sequence of Zl-modules:

0! Zk
l XW0 ! Zk

l ! Q! 0:ð3:3Þ

Since W0 is an l-divisible group, the quotient group Q ¼ Zk
l =ðZk

l XW0Þ is torsion-free, so
Q is a free group, and the exact sequence (3.3) splits. Tensoring by T1 we obtain the exact
sequence of Zl ½GF �-modules

0! T XW ! T ! T1 nZl
Q! 0

which splits. r

Observe that the representation Vl ¼ Tl nQl is semi-simple if the module Tl is inte-
grally semi-simple in the sense of Definition 3.1.

Lemma 3.4. If A is an abelian variety defined over a number field F , then for l su‰-

ciently large, the Tate module TlðAÞ of A is integrally semi-simple.

Proof. We fix an embedding of F in the field of complex numbers C. Let
M ¼ H1

�
AðCÞ;Z

�
GZ2g. Then O ¼ EndA acts on M, i.e., there is an embedding

O! EndðMÞGM2g;2gðZÞ. Let C denote the commutant of O in EndðMÞ. We put
Ol :¼ OnZl , Cl :¼ CnZl . By comparison of the singular and étale cohomology we get:
EndZl

�
TlðAÞ

�
¼ EndðMÞnZl GM2g;2gðZlÞ. By the theorem of Faltings [7], Satz 4 and
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Bemerkung 2, for every l, the commutant of Ol in End
�
TlðAÞ

�
equals the Zl-module gener-

ated by matrices from the image of rlðGF Þ. If
�
W XTlðAÞ

�
nQl is a GF -submodule, then

it follows that TlðAÞ=
�
W XTlðAÞ

�
is a finitely generated, nontorsion Cl-module. On the

other hand, for l large enough, Cl is a maximal order in CnQl . By [6], Theorem 26.12,
it follows that any finitely generated, non torsion Cl-module is projective, if l is large
enough. Hence, the exact sequence of Zl ½GF �-modules

0!W XTlðAÞ ! TlðAÞ ! TlðAÞ=
�
W XTlðAÞ

�
! 0

splits for lg 0. r

Proposition 3.5. Every isogeny class of abelian varieties defined over a number field F

contains an abelian variety A such that for every l, the Tate module TlðAÞ is integrally semi-

simple.

Proof. Observe that an isogeny of degree a power of a prime l 03 l does not change
the module TlðAÞ. Hence, by Lemma 3.4, it is enough to show that for every rational prime
l, there exists an abelian variety B isogeneous to A, for which TlðBÞ is integrally semi-
simple. The vector space TlðAÞnQl contains a lattice L which is integrally semi-simple
by Lemma 3.2. Multiplying by a power of l, if necessary, we can assume that LHTlðAÞ.
The quotient group TlðAÞ=L defines a finite GF -stable l-torsion subgroup D of A. To finish
the proof we put B ¼ A=D. r

Proposition 3.6. Let M, N be free, finitely generated Zl -modules with continuous ac-

tions of GF . Let N be integrally semi-simple. Assume that there are given homomorphisms of

Zl ½GF �-modules

a : M !
Lr
i¼1

N and b : M ! N

such that for every m A M and every k A N:

If aðmÞ A l k
�Lr

i¼1
N

�
; then bðmÞ A l kN:

Then there exists a homomorphism of Zl ½GF �-modules: g :
Lr
i¼1

N ! N such that g � a ¼ b.

Proof. We put: Wa :¼ Im anQl , Wb :¼ Im bnQl and V :¼
Lr
i¼1

NnQl . SinceTy
k¼1

l kM ¼ 0, by assumption, if aðmÞ ¼ 0, then bðmÞ ¼ 0. Hence, ker aH ker b and the

space Wb ¼M=ker bnQl is the quotient of the linear space Wa ¼M=ker anQl . Let
x : Wa !Wb denote the quotient map. Since N is integrally semi-simple, the Zl ½GF �-

module,
Lr
i¼1

N is also integrally semi-simple and there exists a Zl ½GF �-module PH
Lr
i¼1

N,

which is the complement of Wa X
Lr
i¼1

N in
Lr
i¼1

N. We denote by p :
Lr
i¼1

N !WaX
Lr
i¼1

N the

quotient map, which is a homomorphism of Zl ½GF �-modules. Define the homomorphism

g :
Lr
i¼1

N ! NnQl by the composition
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Lr
i¼1

N NnQl???yp

 ��L

Wa X
Lr
i¼1

N K��! Wa ���!x Wb:

��������������!g

By construction, for every m A M we have g
�
aðmÞ

�
¼ bðmÞ. To finish the proof it is enough

to show that Im gHN. Since p (and hence also g) has trivial restriction to the submodule P,

it is enough to show that g

�
Wa X

Lr
i¼1

N

�
HN. If n A WaX

Lr
i¼1

N, then there is kf 0, such

that l kn A aðMÞ, so l kn ¼ aðmÞ for an m A M. If k > 0, then by assumption bðmÞ A l kN,
hence

gðnÞ ¼ l�kgðl knÞ ¼ l�kg
�
aðmÞ

�
¼ l�kbðmÞ A N: r

4. Proof of main theorem

Theorem 4.1. Let A be an abelian variety defined over a number field F. Let

O :¼ EndF A denote the ring of F-endomorphisms of A. Let l be a prime number with the

following properties. We assume that the Tate module TlðAÞ of A at l is an integrally semi-

simple GF -module. Let L̂L be a submodule of AðFÞnZl which is free over the ring

Ol :¼ OnZl . Let P̂P A AðFÞnZl be a point for which the cyclic module Ol P̂P is free over the

ring Ol . Then the following local-global principle holds for A, L̂L and P̂P. The point P̂P is con-

tained in L̂L, if and only if, the point r̂rvðP̂PÞ is contained in the group r̂rvðL̂LÞ, for almost all

primes v of F.

Proof. For a profinite group G and a rational prime l we denote by

ĜG ¼ lim � Gab=l kGab

the l-adic completion of the abelianization Gab ¼ G=½G;G� of G. Let jl : G ! ĜG denote the
natural homomorphism of topological groups. Every group homomorphism Hly ! TlðAÞ
induces a homomorphism ĤHly ! TlðAÞ of Zl-modules. Hence, the Kummer map f of Def-
inition 2.5 induces a homomorphism of Zl-modules:

f̂f : AðFÞnZl ! HomGly

�
ĤHly ;TlðAÞ

�
;

such that the following diagram commutes:

HomGly

�
Hly ;TlðAÞ

�

AðFÞnZl

HomGly

�
ĤHly ;TlðAÞ

�
ð4:2Þ

����������!f

����������!f̂f ����
����

��!

Homð jl ;TlðAÞÞ
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The proof of the theorem will be in two steps. First we deduce the claim of the theo-
rem from an additional condition. Then, assuming that the extra condition does not hold,
we obtain a contradiction with the assumption of the theorem.

Step 1. For a basis P̂P1; P̂P2; . . . ; P̂Pr of the Ol-module L̂L we denote by

F̂F : ĤHly !
Lr
i¼1

TlðAÞ the map F̂F ¼
�
f̂fðP̂P1Þ; . . . ; f̂fðP̂PrÞ

�
. In the first step of the proof, we as-

sume that for every basis P̂P1; P̂P2; . . . ; P̂Pr of the Ol-module L̂L, for every n A N, and for every
s A ĤHly :

If F̂FðsÞ A l n
�Lr

i¼1
TlðAÞ

�
; then f̂fðP̂PÞðsÞ A l nTlðAÞ:ð4:3Þ

We apply Proposition 3.6 to M ¼ Im F̂F, N ¼ TlðAÞ, a ¼ F̂F, and b ¼ f̂fðP̂PÞ. It implies that

there is a homomorphism g :
Lr
i¼1

TlðAÞ ! TlðAÞ of Zl ½GF �-modules such that g � F̂F ¼ f̂fðP̂PÞ.

Let gi : TlðAÞ ! TlðAÞ for 1e ie r, be the restriction of g to the ith component of the di-

rect sum
Lr
i¼1

TlðAÞ. Hence, gi is an Zl ½GF �-endomorphism of the module TlðAÞ and we have:Pr
i¼1

gif̂fðP̂PiÞ ¼ f̂fðP̂PÞ. By the theorem of Faltings [7], Satz 4: EndZl ½GF �
�
TlðAÞ

�
GOl . It follows

that there is an element f̂fi A Ol such that gif̂fðP̂PiÞ ¼ f̂fð f̂fiP̂PiÞ. Since f̂f is a homomorphism of
Zl-modules, we get:

f̂f

�Pr
i¼1

f̂fiP̂Pi

�
¼ f̂fðP̂PÞ:ð4:4Þ

The diagram (4.2) and Lemma 2.6 imply that: ker f̂fHAðFÞtorsnZl . Hence, by (4.4):

P̂P ¼
Pr
i¼1

f̂fiP̂Pi þ R̂R for some R̂R A AðFÞtorsnZl . To complete the first step of the proof, it is

enough to show that R̂R ¼ 0. By Proposition 2.11, there exist infinitely many v (even
positive density) such that r̂rvðL̂LÞ ¼ 0. In particular r̂rvðQ̂QÞ ¼ 0 and also r̂rvðP̂PÞ ¼ 0 because
r̂rvðP̂PÞ A r̂rvðL̂LÞ, by assumption. Hence, r̂rvðR̂RÞ ¼ 0, for infinitely many v. This implies that
R̂R ¼ 0, as it is well-known that, for almost all v, the restriction of the reduction map r̂rv to
AðFÞtorsnZl is an injection.

Step 2. We assume to the contrary that the condition (4.3) does not hold, i.e., that
there exist: a basis P̂P1; P̂P2; . . . ; P̂Pr of the Ol-module L̂L, a natural number n and s A ĤHly such
that

F̂FðsÞ A l n
�Lr

i¼1
TlðAÞ

�
and f̂fðP̂PÞðsÞ B l nTlðAÞ:

Since H ab
ly is a profinite abelian group, the l-adic completion ĤHly is isomorphic to a closed

subgroup of H ab
ly . Let ~ss A Hly be a lifting of s defined by this isomorphism. Since

TlðAÞ=l nTlðAÞ ¼ A½l n�, it follows by the definition of f̂fðP̂PÞ that ~ss acts trivially on the

points
1

l n
P̂P1; . . . ;

1

l n
P̂Pr, and acts non trivially on the points

1

l n
P̂P. Define the field
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Fly
1

ly
L̂L;

1

ly
P̂P

� �
:¼ Fly

1

ly
L̂L

� �
Fly

1

ly
P̂P

� �
.

Consider the open set in the group G

 
Fly

1

ly
L̂L;

1

ly
P̂P

� �
=F

!
consisting of elements which

act in the same way as s :¼ ~ssj
Fly

�
1
ly

L̂L; 1
ly

P̂P
�. We claim that there exists kf n and an element

g in this open set, such that g acts as a scalar congruent to 1 modulo l k but not modulo
l kþ1, on the Tate module TlðAÞ. Indeed, by the theorem of Bogomolov [4], Corollary 1,
p. 702, in Gly there exists a nontrivial homothety t ¼ aI2g such that a A Z�l is congruent

to 1 modulo l. Lifting t to a homothety h A G

 
Fly

1

ly
L̂L;

1

ly
P̂P

� �
=F

!
, we define the ele-

ment g :¼ hl ks which has the desired property, if k is su‰ciently large. Next, we apply
the Chebotarev density theorem to choose infinitely many prime ideals v in OF in such
a way that the Frobenius element Frv is close enough to g, so Frv acts trivially on

points of A½l k� and on points
1

l n
P̂Pi for 1e ie r, but acts non-trivially on all points

1

l n
P̂P. Let

w be a prime in Fl k which is over v. Since Frv is the identity in the extension
Fl k=F and AvðkvÞ½l k� ¼ AwðkwÞ½l k� ¼ AvðkvÞ½l k� ¼ ðZ=l kÞ2g, reducing modulo v, we obtain

AvðkvÞl ¼ ðZ=l kÞ
2g. It follows by Lemma 2.12 that the elements r̂rvðP̂P1Þ; . . . ; r̂rvðP̂PrÞ are divis-

ible by l n, and that r̂rvðP̂PÞ is not l n-divisible in the group AvðkvÞl . Hence, the orders of
r̂rvðP̂P1Þ; . . . ; r̂rvðP̂PrÞ are divisible by at most l k�n, and the same is true for any element of the
subgroup of AvðkvÞl ¼ ðZ=l kÞ

2g generated by these points. On the other hand, the order of
r̂rvðP̂PÞ in AvðkvÞl is divisible by at least l k�nþ1. This holds true for infinitely many prime
ideals v which we have chosen above. Hence, r̂rvðP̂PÞ B r̂rvðL̂LÞ, for infinitely many v, contrary
to the assumption of the theorem. r

We are indebted to the referee for the following observation.

Corollary 4.5. The same local-global principle holds for any A, l and P̂P as in Theorem

4.1, and for any L̂L which is torsion-free over the ring Ol , provided that the ring OnQl is a

division algebra and Ol is its maximal order.

Proof. This is an immediate corollary of Theorem 4.1, since any torsion-free, finitely
generated module over the maximal Zl-order Ol contained in the division Ql-algebra
OnQl , is a free Ol-module cf. [12], Exercise 1, p. 181. r

5. Corollaries

Theorem 5.1. Let A be an abelian variety defined over a number field F. Let L be a

free O-submodule of AðFÞ. Let P be a point in AðFÞ, such that the module OP is free over O.
Then the following local-global principle holds. The point P is contained in the module L, if
and only if, the point rvðPÞ is contained in the module rvðLÞ, for almost all primes v of F.

Proof. If P belongs to L, then rvðPÞ belongs to rvðLÞ, for all primes v of F because
rv is a group homomorphism. In order to prove that the converse implication holds, we
assume that rvðPÞ A rvðLÞ, for almost all v. Fix a prime number l. Let a : A! B be an
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F -isogeny, where B is an abelian variety over F for which the Tate module TlðBÞ is
integrally semi-simple. The isogeny a was constructed in the proof of Proposition 3.5.
Note that the degree of a is a power of l. We put degðaÞ ¼ lm. To simplify notation, we
use the same letters to denote an F -isogeny and the associated group homomorphism on

the F -points. We apply Theorem 4.1 to: the variety B, the point daðPÞaðPÞ :¼ aðPÞn 1, and the
module daðLÞaðLÞ :¼ aðLÞnZl . It is easy to verify that the assumptions are satisfied in this
case. In particular, the module Ol P̂P where P̂P :¼ Pn 1, is free over Ol because the O-module
OP is free, by assumption. This implies that the cyclic module generated by the point daðPÞaðPÞ
over the ring EndF BnZl is free, as well. Hence, by Theorem 4.1 the point daðPÞaðPÞ belongs to
the module daðLÞaðLÞ. Let b : B! A be the unique F -isogeny such that the compositions b � a
and a � b are multiplications by lm. By applying the map bn 1 to the relation daðPÞaðPÞ A daðLÞaðLÞ
we obtain the equation: P̂P ¼ Q̂Qþ R̂R, for some Q̂Q A L̂L and R̂R A A½l m�nZl . We prove that
R̂R ¼ 0 using Proposition 2.11, as in the first step of the proof of Theorem 4.1. This shows
that the point P̂P ¼ Pn 1 belongs to L̂L ¼ LnZl , for every l. To prove that the point P be-
longs to the module L, it su‰ces to consider the subgroup X of the quotient group AðFÞ=L
generated by the coset of P, and use the fact that X ¼ 0, if and only if, X nZl ¼ 0, for
every prime number l.

Remark 5.2. One can prove the local-global principle for detecting an inclusion be-
tween two free O-submodules of AðFÞ by reduction maps, by using the method of the proof
of Theorem 5.1. We are indebted to John Cremona for this observation.

Remark 5.3. Weston showed in [15] that, if A is an abelian variety with a commuta-
tive ring of F -endomorphisms, then for any subgroup H and any point P in AðFÞ, the re-
lation P A H þ AðFÞtors holds, provided rvðPÞ belongs to rvðHÞ, for almost all primes v.
One can clear the torsion ambiguity in the statement of Weston’s theorem by using Propo-
sition 2.11, if H and PO are free O-submodules of AðFÞ, as in the first step of the proof of
Theorem 4.1.

Remark 5.4. Proposition 2.11 gives a proof of the following result of Richard Pink,
which was proven in [11], Proposition 4.1 by another method: Fix a rational prime l. Let A

be a simple abelian variety defined over the number field F. Let P A AðFÞ be a point of infinite

order and let Q A AðFÞl-tors. Then there exists a set P of primes of F of positive density, such
that, for v A P, the l-part of rvðPÞ coincides with rvðQÞ. In order to see this, observe that the
point P�Q is of infinite order, and that the ring OnQ is a division algebra. It follows
that P�Q is nontorsion over O. By Proposition 2.11 there exists a set of primes P, with
positive density, such that, if v A P, then r̂rvðP̂P� Q̂QÞ ¼ 0 in the group AvðkvÞl-tors.

The method of the proof of Theorem 5.1 provides the following two corollaries. Note
that Corollary 5.6 extends [2], Theorem 8.2 to abelian varieties with non commutative al-
gebras of endomorphisms.

Corollary 5.5. The claim of Theorem 5.1 holds true, if we replace the condition:
rvðPÞ A rvðLÞ, for almost all v, by the following: the order of rvðPÞ divides the orders of

rvðP1Þ; rvðP2Þ; . . . ; rvðPrÞ in the group AvðkvÞ, where P1;P2; . . . ;Pr is an O-basis of the free

module L.

Proof. The proof is very similar to the proof of Theorem 5.1. For a prime number l,
we put P̂P :¼ Pn 1, P̂Pi :¼ Pi n 1, for 1e ie r, and L̂L :¼ LnZl . First we have to modify
the argument in the proof of Theorem 4.1. In Step 1 of the proof, assuming the condition
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(4.3), we show that if the order of r̂rvðP̂PÞ divides the orders of r̂rvðP̂P1Þ; r̂rvðP̂P2Þ; . . . ; r̂rvðP̂PrÞ for
almost all v, then the point P̂P A L̂L. Then assuming that the condition (4.3) does not hold, we
show that there exist infinitely many prime ideals v, such that the images of the points
P̂P1; . . . ; P̂Pr by the reduction r̂rv are not l k�nþ1-divisible, but r̂rvðP̂PÞ is divisible by l k�nþ1, for
kf n chosen as in Step 2 of the proof of Theorem 4.1. Hence, the order of r̂rvðP̂PÞ is larger
than the orders of r̂rvðP̂PiÞ, for those v, and for 1e ie r, which contradicts the assumption of
the corollary. The rest of the proof repeats the argument of the proof of Theorem 5.1. r

Corollary 5.6. In every isogeny class of abelian varieties defined over a number field

F there exists an abelian variety A with the following property. Set O ¼ EndF A. Let

P1;Q1;P2;Q2; . . . ;Pr, Qr A AðFÞ be points which generate free modules over O and such

that the following condition holds. For all sets of natural numbers fm1;m2; . . . ;mrg, for al-
most all v, in the group AvðkvÞ we have:

If
Pr
i¼1

mirvðPiÞ ¼ 0; then
Pr
i¼1

mirvðQiÞ ¼ 0:

Then there exist endomorphisms f1; f2; . . . ; fr A O and torsion points R1;R2; . . . ;Rr A AðFÞtors
such that Q1 ¼ f1P1 þ R1;Q2 ¼ f2P2 þ R2; . . . ;Qr ¼ frPr þ Rr.

Proof. Let A be an abelian variety for which all Tate modules are integrally semi-
simple. Such an abelian variety exists in every isogeny class by Proposition 3.5. We describe
the changes in the proofs of Theorem 4.1 and Theorem 5.1 which su‰ce to deduce Corol-
lary 5.6. The condition (4.3) is being replaced by: Assume that for all prime numbers l, all
n A N, all s A ĤHly , and 1e ie r:

If f̂fðP̂PiÞðsÞ A l nTlðAÞ; then f̂fðQ̂QiÞðsÞ A l nTlðAÞ;ð5:7Þ

where P̂Pi :¼ Pi n 1 and Q̂Qi :¼ Qi n 1, for 1e ie r. In the first step of the proof, we apply
Proposition 3.6 to every pair of homomorphisms f̂fðP̂PjÞ, f̂fðQ̂QjÞ, for 1e ie r. The first part
of Step 1 of the proof of Theorem 4.1 repeats in this case, which shows that, for every l,

Q̂Qi ¼ f̂fiP̂Pi þ R̂Ri, for f̂fi A Ol , a torsion point R̂Ri, and for every 1e ie r. This implies that
Pi A OQi þ AðFÞtors, for 1e ie r (if the condition (5.7) holds). Note that this time we can
not remove the torsion ambiguity because Proposition 2.11 does not apply. In the second
step of the proof, we assume that the condition (5.7) does not hold for A and a prime l,
i.e., there exists a natural number n, an element s A ĤHly and an index 1e je r such
that f̂fðP̂PjÞðsÞ A l nTlðAÞ and f̂fðQ̂QjÞðsÞ B l nTlðAÞ. Observe that to get a contradiction
with the assumption of the corollary, it su‰ces to consider the reduction maps
r̂rv : AðFÞnZl ! AvðkvÞl-torsion. In the same way as in Step 2 of the proof of Theorem 4.1,
we find kf n, such that for infinitely many prime ideals v of OF , the order of r̂rvðP̂PjÞ is
bounded from above by l k�n while the order of r̂rvðQ̂QjÞ is bounded from below by l k�nþ1,
and AvðkvÞl ¼ ðZ=l kÞ

2g. To get the contradiction we take: mj ¼ l k�n and mi ¼ l k, for
i3 j. r
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[2] G. Banaszak, W. Gajda, P. Krasoń, On reduction map for the étale K-theory of curves, Homot., Homol.

Appl. 7 (2005), 1–10.
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