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1 Many Questions and Some Answers

A usual feature in the life of a mathematician is:
Someone, it may be a layman or a colleague, is asking a
(simple) question.
And very often, the embarrassing result is that one cannot give an answer.

Questions about diophantine problems are notorious for this feature, and for
350 years the most prominent example was

Fermat’s Conjecture (FLT)

Xp + Y p = 1

has only two solutions over the field of rational number Q if p is a prime > 2.
It is not clear why this specific claim became so important for number theory.

For instance, it is reported that C.F. Gauß (after having tried to get results) said
that he could state a problem as interesting as Fermat’s claim every week.
He was wright in one sense, namely the importance of FLT as mathematical state-
ment is not overwhelming.

But he was wrong in a deeper sense: It turned out that FLT was a wonderful
testbed and triggered new theories like Algebraic Number Theory.
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1.1 Some Answers

This gives a hint for strategies to answer questions:
Look for structural reasons why it can be true (or wrong), and then use
these structures.
We know:

1.
Y 2 = X3 + 1

has only finitely many points with coordinates in Z.(Siegel-Mahler)

2.
Y 2 = X6 + 1

has only finitely many points with coordinates in Q (Faltings)

3.
Xp + Y p = 1

has, for p > 2 only two points with coordinates in Q (Taylor–Wiles)

4. The projective curve

Y 2Z = X3 +A ·XZ2 +B · Z3

with
A = 7D5A0975FC2C3057EEF67530417AFFE

7FB8055C126DC5C6CE94A4B44F330B5D9

and
B = 26DC5C6CE94A4B44F330B5D9BBD77C

BF958416295CF7E1CE6BCCDC18FF8C07B6

has modulo

p = A9FB57DBA1EEA9BC3E660A909D838D7

26E3BF623D52620282013481D1F6E5377

exactly
q = A9FB57DBA1EEA9BC3E660A909D838D7

18C397AA3B561A6F7901E0E82974856A7

points. p, q are numbers with 256 bits, i.e. ≈ 80 decimals, and are given in the
hexadecimal system. We come nearer to the structural background by the

5. Conjecture of Serre(∼ 1986), which is now the

Theorem 1.1 (Khare-Wintenberger-Kisin (∼ 2006):
Odd two-dimensional irreducible (continuous ) Fq-representations ρ of the au-
tomorphism group GQ of the algebraic numbers Q̄ are given by its operation on
points of finite order of Jacobian varieties of a well-known “classical” family
of curves, the modular curves X0(N).
In addition, the minimal possible level N and the twist character (“ neben type
”) are obtained from the arithmetical data of ρ.

1

1FLT is just a footnote to this theorem.
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1.2 So What?

A further experience of mathematicians:
Having answered a question after a long and often painful struggle your neighbor
comments:
It is nice that you know now that Fermat was right.
But what it is good for?
G.H.Hardy’s in his book :“A Mathematician’s Apology” stresses the the “useles-
sness” of number theory and claims that its intrinsic beauty is enough to justify it.

He was
wrong about the uselessness:
Because of digitalization number theory plays a prominent role in communication
theory and especially in data security.
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2 Applications

Rosetta meets Churyumov-Gerasimenko, August 6th, 2014 from: Wikipedia This
picture exists because of a first already classical topic application: Coding Theory,
which uses either arithmetically defined lattices or, very successfully, vector spaces
constructed with curves over finite fields.
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In this lecture we shall concentrate on a second topic: Cryptographic methods
that enable to send messages via open channels secure against forging and maintai-
ning privacy.
The result 4.) from above was constructed in this context, for example it is used for
the German e-Passport.

from: Bundesdruckerei
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2.1 Public Key Cryptography

We want to

• exchange keys,

• sign messages

• authenticate entities, and

• encrypt and decrypt (not too large) messages

with simple protocols, clear and easy to follow implementation rules based on cryp-
tographic primitives, which rely on (hopefully) hard mathematical tasks.

2.2 Bits and Q-Bits

The possibility that quantum computing could be realizable in foreseeable time
yields new aspects for the discussion of crypto primitives.
We shall describe below systems for which we have good reasons to believe that the
bit-complexity is exponential.
But their q-bit complexity is subexponential or even polynomial.
New relations between crypto primitives arise. It seems that in this world the hidden
subgroup problem and connected to it, the hidden shift problem related to groups
G are central.
Here the state of the art is that for abelian G the problems can be solved in subex-
ponential time and space, for dihedral groups there is “hope”.

8



2.3 Diffie-Hellman Key Exchange

From now on we shall concentrate on the problem to exchange keys in open channels
in the spirit of Diffie-Hellman. We shall begin with a rather abstract definition
of Diffie-Hellman-like schemes.
At the end of the talk we shall discuss systems that could be more resistant against
quantum computing and there the abstract setting will be useful.

2.3.1 Pushouts in Categories

Two partners P1 and P2 want to share a common secret.
Let Ci; i = 1, 2 be two categories with objects A1

j = A2
j ; j ∈ J and morphisms

Bij,k = Mori(Aj , Ak) and base object A0 such that

1. To ϕ ∈ B1(A0, Aj) and ψ ∈ B2(A0, Ak) the pushout exists, i.e. there is a
uniquely (up to isomorphisms) determined minimal triple

(Al, γ1 ∈ B1(Ak, Al), γ2 ∈ B2(Aj , Al))

with
γ2 ◦ ϕ = γ1 ◦ ψ.

2. P1 can determine Al if he knows ϕ, Ak and an additional (publicly known)
information P (ψ) , and an analogue fact holds for P2.

Key Exchange (P1 chooses ϕ, P2 chooses ψ, they send Aj , Ak and P (ψ)
respectively P (ϕ) and compute the common secret Al.

Security The scheme is broken if the Diffie-Hellman Computational Pro-
blem (DHCP) is weak: For randomly given Aj , Ak determine Al, which is the
pushout of

A0
ϕ→ Aj

and

A0
ψ→ Ak.
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2.3.2 Pushouts by morphisms

Assume A ⊂ N and let B1, B2 ⊂ Endset(A). Choose a0 ∈ A. We need the Centra-
lizing Condition:

The elements of B1 commute with the elements of B2 on Bi{a0}. Then

{b1(b2(a0)) = b2(b1(a0))}

and this is all we need for key exchange.
The effectiveness of this exchange is given if for bi ∈ Bi, bj ∈ Bj the value

bi(bj(a0)) can be quickly evaluated (i.e., calculated and represented). The analogue
of the Computational Diffie-Hellman problem is

CDH: For randomly given a1, a2 ∈ Acompute (if existing)a3 with a3 = ba1 · (ba2 · a0)

where bai ∈ Bi such that bai · a0 = ai. It is clear that CDH can be solved if one can
calculate for random a ∈ Bi · {a0} an endomorphism ba ∈ Bi with ba(a0) = a. We
remark that ba may be not uniquely determined by a.

Problem:

1. Find a “genuine” usable instance for the abstract setting!

2. What can one say about quantum computing security?

Example. Let G be a (semi-)group, and A a simple-transitive G-set.
For g ∈ G, define

tg ∈ Endset(A)

by
a 7→ tg(a) := g · a.

Let G1 be a semi-subgroup of G and G2 ⊂ Z(G1) where Z(G1) is the centralizer of
G1 in G.
Since

tg1(tg2(a0)) = (tg2 ◦ tg1) · a0

we can use (A,G,G1, G2) for key exchange.

Hidden Shift Computations of translations tg on G-sets are typical examples
for hidden shifts.
In the example take the

f0 : B1 → A with f0(g) = tg · a0

and
f1 : B1 → A with f1(g) = tg · (tg1 · a0).

One can try to use quantum computer algorithms to determine g1 and hence to
break the key exchange protocol.
In fact, for B1 abelian and finite there is an algorithm of Kuperberg, which solves
this task in subexponential time.
We shall see an example of a system for which we can apply this result later on.
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2.4 The “Classical” Case

(Totally insecure under QC)
(C,+) is a cyclic group of prime order ` with a numeration by which it is embedded
into N.
A ⊂ N is the set of generators of C.
a0 is a fixed generator.
Take

G1 = G2 = (Z/`)∗ = N∗` mod ∗`

where N∗` are the natural numbers prime to ` and tb(a) = a+ a · · ·+ a
(b summands: Scalar multiplication in C).
The Discrete Logarithm (DL ) of a ∈ A relative to the base point a0 is

log(a) = min(z ∈ N∗` ; tz(a0) = a).

(A, a0, N
∗
` ) is a DL-System. 2

2.5 Tasks to be Done

In order that we can use (a family of) groups G for crypto systems based on discrete
logarithms they have to satisfy three crucial conditions:

1. The elements in G can be stored in a computer in a compact way
(e.g. O(log(| G |) bits needed)).

2. The group composition is given by an algorithm that is easily and efficiently
implemented and very fast.

3. The computation of the DL in G (for random elements) is (to the best of
our knowledge) very hard and so infeasible in practice (ideally exponential in
| G |), in particular the group order of G has to be a large prime.

2Maurer - Wolf : Up to subexponential (probabilistic) algorithms the crypto primitive deter-
mining security of a DL-system is the Discrete Logarithm.
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3 Arithmetic Geometry

The structural background used today for solving this task is

Arithmetic Geometry

a mathematical discipline that combines

• Algebraic Number Theory

• Algebraic Geometry

• Theory of Functions over C

and culminates in
Modern Galois Theory, i.e. the arithmetical theory of representations of Galois
groups.

3.1 Algorithmic Arithmetic Geometry

Besides the theoretical side there is a very exciting and rapidly proceeding algorith-
mic aspect of Arithmetic Geometry
It generalizes considerably both range and techniques of now classical Computatio-
nal Number Theory

Examples are: Algorithms for modular forms and modular curves and related
Galois representations
but of course also: explicit theory of varieties over finite fields
as counterpart to explicit theory of algebraic number fields.
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3.2 Arithmetical Curves and Surfaces

The analogy between the arithmetic of number fields and function fields of one va-
riable over finite fields has been known at least since the beginning of the twentieth
century, and it had a stimulating effect on both topics.

The application of fundamental work of
Alexander Grothendieck

has deepened and widened this analogy enormously.

from: Wikipedia
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3.2.1 Curves

Definition 3.1 A curve is a scheme, such that the stalk in a closed point has Krull
dimension 1.

Arithmetical curves. Take K as number field with integers OK . CK is a ringed
space to Spec(OK): For finite S ⊂ Spec(OK) and
U = Spec(OK) \ S define

O(U) := OS = {x ∈ K;x = y/z}

with z /∈ P for P ∈ U.
The “function field” field of CK is K.
The stalk OP at P 6= 0 is a valuation ring .
The restriction of f ∈ OP to P is the reduction modulo P .
A prime divisor P of K is defined as equivalence class of valuations with ring OP .
Its degree is log(|OK/P |.

Geometric projective curves. Let K0 be a perfect field with Galois group
GK0 := AutK0(K0).
An irreducible projective regular curve C over K0 is a closed scheme of dimension 1
over Spec(K0) embedded in Pn/K0. For finite S ⊂ C define

O(U) := OS

as holomorphic functions outside of S in the function field KC of C.
Regularity of C yields thatGK0 -orbits in C(K0) correspond one-to-one to equivalence
classes of valuations of KC , which are trivial on K0.
A prime divisor P of C is a Galois orbit of a point P ∈ C(ovK0).
Its degree deg(P) is |P|.

3.2.2 Arithmetical Surfaces

Take S = Spec(OK) where K is a number field. Let CK be a projective curve over
K.
After having chosen an embedding into a projective space we can extend CK to a
scheme C over S.
C is two-dimensional and hence a surface with fibers over Spec(OK).
The generic fiber is CK , for maximal ideals P ⊂ OK the fiber CP is a projective
curve over a finite field, the reduction mod P of C.
This reduction may be neither regular nor irreducible (but connected) (bad reduc-
tion).
Hence we can study curves over number fields together with their reductions with
the powerful methods of the theory of surfaces (e.g. minimal models, metrics).
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3.2.3 Picard Groups of Curves

Let C be a regular curve.
The divisors group DC is the free abelian group generated by the set of prime
divisors.
A principal divisor of f ∈ K∗C is

(f) :=
∑

P prime divisor of C

vP(f) ·P

where vP is the normalized valuation in P.

Definition 3.2
PicC := DC/PC .

Picard groups of projective curves Take C projective without singularities.

The degree of a divisor

D =
∑

zP ·P

is ∑
zP · deg(P).

Divisors of degree 0 form a subgroup D0
C of DC containing principal divisors.

Definition 3.3
Pic0
C := D0

C/PC
is the divisor class group of degree 0 of C.
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4 Algorithms in Picard Groups

The main question in this section is: Can we use Picard groups of curves for DL-
systems useable in crypto systems, i.e.: Are the 4 items in Task 2.5 satisfied for a
clever choice of curves?

4.1 The Theorem of Riemann-Roch

Let K be a number field.
The basic Theorem of Minkowski ensures that in every ideal class there is an
ideal ⊂ OK with small norm, and so Pic(OK) is a finite abelian group.
This result (and Dirichlet’s theorem) is the key ingredient for Algorithmic Num-
ber Theory.
It is possible to compute explicitly and efficiently with ideal classes using integral
ideals with small norm. Fundamental for the arithmetic of curves C over K0 is the

Theorem of Riemann-Roch.

4.1.1 Riemann-Roch Spaces

We define a partial ordering of elements in DivC(k) as follows; D =
∑

p∈ΣC(k) zp is

effective (D ≥ 0) if zp ≥ 0 for every p, and D1 ≥ D2 if D1 −D2 ≥ 0.

Definition 4.1 Let D =
∑

p∈ΣC(k) zp ∈ DivC(k). The Riemann-Roch space as-
sociated to D is

L(D) = {f ∈ K(C)∗ with (f) ≥ −D} ∪ {0}.

So the elements x ∈ L(D) are defined by the property that wp(x) ≥ −zp for all
p ∈ ΣC(k).

Basic properties of valuations imply immediately that L(D) is a vector space
over k. This vector space has positive dimension if and only if there is a function
f ∈ K(C)∗ with D + (f) ≥ 0, or equivalently, D ∼ D1 with D1 ≥ 0.

Proposition 4.2 Let D = D1 −D2 with Di ≥ 0. Then

dim(L(D)) ≤ deg(D1) + 1.

We remark that for D ∼ D′ we have `(D) ∼ `(D′). In particular L(D) is a finite-
dimensional K-vector space.

Definition 4.3 `(D) := dimK(L(D)).

To compute `(D) is a fundamental problem in the theory of curves.

Theorem 4.4 (Riemann) For given curve C there is a minimal number gC ∈
N ∪ {0} such that for all D ∈ DivC we have

`(D) ≥ deg(D) + 1− gC .

Definition 4.5 gC is the genus of C.

The theorem of Riemann can be refined (Roch-part) ( and then reveals its true
face: duality) by using divisors of differentials:

Theorem 4.6 Let Ω be a canonical divisor of C. For all D ∈ DivC(K) we have

`(D) = deg(D) + 1− gC + `(Ω−D).
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A differential ω is holomorphic if (ω) is an effective divisor. The set of holomor-
phic differentials is a K-vector space denoted by ω0

C which is equal to L(W ).
Take D = 0 respectively D = W in the theorem of Riemann-Roch to get

Corollary 4.7 ω0
C is a gC- dimensional K- vector space and deg(W ) = 2gC − 2.

For the applications we have in mind there are two further consequences of the
Riemann-Roch theorem important.

Corollary 4.8 The following are true:

1. If deg(D) > 2gC − 2 then `(D) = deg(D) + 1− gC .

2. In every divisor class of degree g there is a positive divisor.

4.2 Applications of RR

4.2.1 Picard groups of curves over finite fields

A first consequence is: If K0 = Fq then

Pic0
C is a finite abelian group

and the elements can be presented with a number of bits depending polynomially
on gC and log q.

But we get much more:

Theorem 4.9 (F.Heß, C. Diem)
Let C be a curve of genus gC over Fq.
The addition in Pic0

C can be executed (probabilistically) with a number of bit-operations,
which is bounded (explicitly) polynomially in gC (for q fixed) and log(q) (for gC fi-
xed).

The proof of this theorem is modeled after an analogous result for addition in ideal
classes of number fields, the theorem of Riemann-Roch replaces the theorem of
Minkowski.
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4.2.2 Equations for Curves

There is a one-to-one correspondence between function fields F of transcendence
degree 1 over the field of constants k (which is assumed to be algebraically closed
in F and isomorphic classes of projective regular absolutely irreducible curves C
with k(C) = F . The natural question is: Given F , how can one find C as embedded
projective curve in an appropriate Pn?

The main tool to solve this question are Riemann-Roch systems. Let D with
`(D) = d+ 1 > 0 and (f0, f1, . . . , fd) a base of L(D). Then

ΦD : C(k̄)→ Pd((̄k)

P 7→ (f0(P ) : f1(p) : · · · : fd(P ))

is a rational map defined in all points for which f0, . . . , fd do not vanish simulta-
neously. L(D) is without base points if this set is empty, and then ΦD is a morphism
from C in Pd.

Lemma 4.10 For g ≥ 3 and D = ωC the space L(ω) = ω0
C is without base points,

and so Φω is a morphism from C to PgC−1.

Φω may not be an embedding but the only exception is that Phiω induces a
cover to the projective line of degree 2, and then either the genus of C is 1 or C is
hyperelliptic.

Theorem 4.11 Let C be a curve of genus gC > 2 and assume that C is not hype-
relliptic. Then Φω is an embedding of C into PgC−1 and the image is a projective
regular curve of degree 2gC − 2 (i.e. the intersection with a generic hyperplane has
2gC − 2 points).

So having determined a base of the canonical class of C one gets a parameter
representation of C and then one can determine the prime ideal in k[Y0, . . . , ygC ]
vanishing on Φω(C). Φω is the canonical embedding of C.

Example 4.12 Take gC = 3 and assume that C is not hyperelliptic. Then the ca-
nonical embedding maps C to a regular projective plane curve of degree 4. In other
words: All non-hyperelliptic curves of genus 3 are isomorphic to non-singular quar-
tics in P2.

Plane Curves: Only very special values of the genus of C allow to find plane
regular projective curves isomorphic to C. We have just seen that g = 3 is such a
value. The reason behind is the Plücker formula, which relates degree, genus and
singularities of plane curves. But of course, there are many projective plane curves
which are birationally equivalent to C:

Take x ∈ k(C) \ k with k(C)/k(x) separable. Then there is an element y ∈ k(C)
with k(x, y) = k(C), and by clearing denominators we find a polynomial G(x, y) ∈
k[X,Y ] with G(x, y) = 0. Then the curve C′ given by the homogenized polynomial

Gh(X,Y, Z) = 0

is a plane projective curve birationally equivalent to C but, in general, with singu-
larities. Using the canonical embedding for non hyperelliptic curves and general
projections we can chose Gh(X,Y, Z) as homogeneous polynomial of degree 2gC−2.

Remark 4.13 In general this is not the minimal degree for plane curves of genus
g,

But in general, this is not
In the next subsection we shall describe a systematic way to find plane equations

for hyperelliptic curves.
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4.2.3 Plane equations for elliptic and hyperelliptic curves, Weierstrass
normal forms

We first focus on elliptic curves.

Elliptic Curves We assume that E is a curve of genus 1 with a k-rational point P∞
and corresponding prime divisor p∞. By definition, E is an elliptic curve defined over
k. We look at the Riemann-Roch spaces Li := L(i · p∞) and denote their dimension
by `i. Since 2gE − 2 = 0 we can use the theorem of Riemann-Roch to get: `i = i.
Hence L1 =< 1 >, L2 =< 1, x > with a function x ∈ K(E) with (x)∞ = 2p∞,
L3 =< 1, x, y > with (y)∞ = 3p∞ and L5 =< 1, x, x2, y, xy > with 5 linearly
independent functions.

Now look at L6. This is a vector space of dimension 6 over k. It contains the
seven elements {1, x, x2, x3, y, xy, y2} and hence there is a non-trivial linear relation∑

0≤i≤3; 0≤j≤2

ai,jx
iy2.

Because of the linear independence of (1, x, x2, y, xy) we get that either a3,0 or a0,2

are not equal 0, and since x3 and y2 have a pole of order 3 in p∞ it follows that
a0,2 · a3,0 6= 0. By normalizing we get x and y satisfy the equation

Y 2 + a1X · Y + a3Y = a0X
3 + a2X

2 + a4X + a6.

By multiplying with a2
0 and substituting (X,Y ) by (a0X, a0Y ) we get an affine

Weierstrass equation for E :

WEaff : Y 2 + a1X · Y + a3Y = X3 + a2X
2 + a4X + a6.

The homogenization give the cubic equation

WE : Y 2 · Z + a1X · Y · Z + a3Y · Z2 = a0X
3 + a2X

2 · Z + a4X · Z2 + a6 · Z3

which defines a plane projective curve.
The infinite points of this curve have Z = 0, and so only infinite point is P∞ =

(0, 1, 0) corresponding to the chosen p∞. Looking at the partial derivatives one
verifies that E has no singularities iff the discriminant with of the affine equation
WEaff as polynomial in X is different from 0, and that this is equivalent with the
condition that k(E) is not a rational function field.

Theorem 4.14 Elliptic curves defined over k correspond one-to-one the isomor-
phic classes of plane projective curves without singularities given by Weierstrass
equations

WE : Y 2 · Z + a1X · Y · Z + a3Y · Z2 = a0X
3 + a2X

2 · Z + a4X · Z2 + a6 · Z3

with non-vanishing discriminant X-discriminant.
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Since we are dealing with isomorphism classes of such curves we can further
normalize the equations and finally find invariants for the class of a given E .
This is a bit tedious if char(K)|6. In this case we refer to J.Silverman: The Arith-
metic of Elliptic Curves).
Assume that char(k) 6= 2, 3 then we can use Tschirnhausen transformations to get
and equation

WE : Y 2 · Z = X3 − g3X · Z2 − g3 · Z3

and the reader should compare this equation with the differential equation satisfied
by the Weierstraß ℘-function.

We use this analogy and define ∆(E) = 4g3
2 − 27g2

3 and this is, because of the
regularity of E , an element 6= 0, as well as

jE = 123 4g3
2

∆E
.

If K is algebraically closed then jE determines the isomorphy class of E .
For arbitrary K, E is determined up to a twist, which is quadratic if char(k) is
prime to 6 (see again Silverman’s book)
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Weierstrass equations for hyperelliptic curves: We apply the same strategy
to hyperelliptic curves of genus ≥ 2. Let C be a curve over K of genus g ≥ 2 with a
cover

η : C → P1

of degree 2. We assume that there is a point P∞ ∈ C(k) corresponding to a prime di-
visor p∞ of C of degree 1. Take Q∞ = η(P∞) ∈ P1(K) and x ∈ K(P1) with (x)∞ =
p0,∞ with p0,∞ a prime divisor of degree 1 of P1. Thus, conorm(p0,∞) = 2 · p∞ and
so η is ramified in Q0, or conorm(p0,∞) = p∞ · p′∞. In any case conorm(p0,∞) =: D
is a positive divisor of degree 2. We define the Riemann-Roch spaces Li = L(i ·D)
and `i = dimK(Li).

By assumption L1 has as base (1, x) and so `1 = 2.

Counting of dimensions for larger i yields:
The space L2(g+1) has dimension 3g + 3 and contains the 3g + 4 functions

{1, x, xg+1, y, xg+2, xy, . . . , x2(g+1), xg+1y, y2}.

So there is a nontrivial K-linear relation between these functions, in which y2 has
to have a non-trivial coefficient. We can normalize and get and equation

y2 + h(x)y = f(x) with h(x), f(x) ∈ k[x]

and deg(h(x) ≤ g + 1, deg(f) ≤ 2g + 2.
The Hurwitz genus formula shows that the cover has exactly 2g + 2 ramification
points, and so deg(f) = 2g+1 if the point at infinity is ramified, and deg(f) = 2g+2
if this point is unramified.
The cover η is uniquely determined up to automorphisms of P1, and so the dimensi-
on of the hyperelliptic locus in the moduli schemeMg of curves of genus g is 2g−1.
(Recall: The dimension of Mg is 3g − 3 and so larger than 2g − 1 for g ≥ 3.)

WCaff : Y 2 + h(X)Y = f(X)

is the equation for an affine part Caff of a curve birationally equivalent to C. It is
called an affine Weierstrass equation for C, and its homogenization is the equation
of a projective plane curve C′ birationally equivalent to C.
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4.2.4 Addition Laws for elliptic and hyperelliptic curves

Again we begin with elliptic curves.
Let E be a curve of genus 1 with rational point P∞, hence by definition E is an
elliptic curve.
By Riemann-Roch we find a regular Weierstraß equation theorem

E : Y 2Z + a1Y XZ + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3

and P∞ = (0 : 1 : 0).
In c ∈ Pic0

E there is exactly one prime divisor P of degree 1 and hence a point
P ∈ E(K0) such that

c = P−P∞.

We identify (Pic0
E ,+) with (E(K0),⊕).

Given P1, P2 ∈ E(K0) the line lP1,P2 through P1, P2 intersects E(K0) in a third
point Q.
P1 + P2 + Q− 3P∞ = (lP1,P2 |E) and so

P1 ⊕ P2 ⊕Q = 0.

4.3 Addition in Picard groups of hyperelliptic curves

Inspired by the group law on elliptic curves and its geometric interpretation one
finds an explicit algorithm for the group operations in Picard groups of hyperelliptic
curves.

Take a genus g ≥ 2 hyperelliptic curve C with a least one rational Weierstraß
point given by the affine Weierstraß equation

WC : y2 + h(x) y = x2g+1 + a2gx
2g + · · ·+ a1x+ a0, (1)

over k. We denote the prime divisor corresponding to P∞ = (0 : 1 : 0) by p∞.
We note that the affine coordinate ring of WC is

O = k[X,Y ]/(Y 2 + h(X) < Y − (X2g+1 + a2gX
2g + · · ·+ a1X + a0) >

and so prime divisors p of degree d of C correspond to prime ideals P 6= 0 with
[O/P : k] = d. Mumford representation:In each divisor class c ∈ Pic0(k) we find a
unique reduced divisor

D = n1p1 + · · ·+ nrpr − dp∞

with
∑r
i=1 ni deg(pi) = d ≤ g, pi 6= ω(pj for i 6= j and pi 6= pinfty.

Using the relation between divisors and ideal in coordinate rings we get that
n1p1 + · · ·+ nrpr corresponds to an ideal I ⊂ O of degree d and the property that
if the prime ideal Pi is such that both P and ω(P ) divide I then it belongs to a
Weierstraß point.

By algebra we get that the ideal I is a free O-module of rank 2 and so

I = k[X]u(X) + k[x](v(X)− Y ).

Fact:
u(X), v(X) ∈ k[X], umonic of degree d, deg(v) < d and u divides v2+h(X)v−f(X).

Moreover, c is uniquely determined by I, I is uniquely determined by (u, v) and
so we can take (u, v) as coordinates for c.
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Theorem 4.15 (Mumford representation) Let C be a hyperelliptic curve of ge-
nus g ≥ 2 with affine equation

y2 + h(x) y = f(x),

where h, f ∈ K[x], deg f = 2g + 1, deg h ≤ g.
Every non-trivial group element c ∈ Pic0

C(k) can be represented in a unique way by
a pair of polynomials u, v ∈ K[x], such that

i) u is a monic
ii) deg v < deg u ≤ g
iii) u | v2 + vh− f

How to find the polynomials u, v?

To find u, v one solves (with High School Math) an interpolation problem.
Given two divisor classes in Mumford representation one has to find such a repre-
sentation in the sum of these classes, and this is done by a reduction step: The
Cantor algorithm:
Take the divisor classes represented by [(u1, v1] and [u2, v2] and “in general positi-
on”. Then the product is represented by the ideal I ∈ O given by < u1u2, u1(y −
v2), u2(y − v1), (y − v1)(y − v2) >.
We have to determine a base, and this is done by Hermite reduction.
The resulting ideal is of the form < u′3(X), v′3(X) + w′3(X)Y > but not necessarily
reduced.
To reduce it one uses recursively the fact that u|(v2 − hv − f).
For readers acquainted with algorithmic number theory it may be enlightening to
compare this algorithm with the well known method to compute class groups of
imaginary quadratic number fields, going back to Gauß and based on the theory of
definite quadratic forms with fixed discriminant.
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4.4 Picard groups of curves as DL - systems?

Conditions 1) and 2) of Task 2.5 are satisfied –if one finds curves C, so that Pic0
C(Fq)

contains a subgroup of large prime order. To check this one needs a fast algorithm
for computing |Pic0

C(Fq)|.
In general this is unsolved.
But before going to tedious details we should discuss the expected security!
There are various attacks to DL-systems based on Picard groups but the worst one
is Index-calculus.

5 Index-calculus

Let ζ be a primitive root of unity in F∗q . Define the (classical) discrete logarithm
(DL) of an element x ∈ F∗q with respect to the base ζ by

logζ(x) = Min{n ∈ N such that ζn = x.

It is obvious that an algorithm that computes discrete logarithms (e.g. in ζ`) solves
(CDH). This problem is rather old (going back at least to the 19-th century). C.F.
Gauss introduced the term “index” in the Disquisitiones Arithmeticae (1801) for
the discrete logarithm modulo p, and there are tables for primes up to 1000 by C.G.
Jacobi(1839).

A systematic algorithm is given in the book on Algebra by Kraichik (1922) ;
in fact this is the index-calculus algorithm reinvented and refined in cryptography
from 1980 till today, see in particular new work of A. Joux e al. As result one gets
algorithms of subexponential complexity (with relatively small constants,), which
are even dramatically faster if q is not a prime.
We recall that a main reason against the classical DL was the index-calculus al-
gorithm, which is based on the (easy) lifting of finite fields to integers in number
fields. This kind of attack is not possible in Picard groups of curves of positive ge-
nus as pointed out by Miller and Koblitz: The “golden shield” of the Néron- Tate
quadratic form prevents a lifting of elements in Abelian varieties over finite fields
to number fields.

But unfortunately there are very effective variants of the index- calculus attack
to Picard groups.
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5.1 The Principle of Index-calculus

Let G,⊕ be a cyclic group of order N with generator g0.
First step:
Find a “factor base” consisting of relatively few elements and computeG as Z−module
given by the free abelian group generated by the base elements modulo relations.
So choose a subset B = {g1, . . . , gr} of G generating G and look for relations If the
following holds

Rj : ⊕ri=1[ni]gi = 0G. (2)

Obviously Rj yields the relation

r∑
i=1

ni logg0(gi) ≡ 0 mod N (3)

for discrete logarithm.
We assume that we can find sufficiently many independent relations as in Eq. (2)

for solving the system in Eq. (3) via linear algebra for logg gi, i = 1, . . . , r. Then we
have an explicit presentation of G as Z-module by

G ∼= Zr/ < ..., Rj , ... > .

Second step: Take g ∈ G randomly and chose a “random walk” with steps
g0 = g, . . . , gj = [kj ]g

j−1 and assume that after a few steps j we find a tuple
e1, .., er with ei small and gj = [e1]g1 + · · · [er]gr.
“To find” means: There is a fast algorithm to decide whether such ei exist, and then
the computation of these ei is also fast.
This boils down to a smoothness condition. (Recall: A number nN is B-smooth if all
prime divisors of n are ≤ B, and results from analytic number theory by Canfield,
Erdös, Pomerance state the probability for n being smooth.
The second step is usually done by an appropriate sieving method.

The important task in this method is to balance the number of elements in
the factor base to make the linear algebra over Z manageable and to guarantee
“smoothness” of arbitrary elements with respect to this base. Usually one finds a
kind of size in G (size of lifted elements in Z or degree in polynomial rings, degree
of reduced divisors ,...) to define factor bases. Typically successful index-calculus
approaches give rise to algorithms for the computation of the DL in G which have
subexponential complexity and so, for large enough order of G, the DL-system has
a poor security.

For an axiomatic approach of index-calculus algorithms we refer to a paper of
A.Enge and P. Gaudry.
This principle is refined in concrete situations with enormous effect as we shall
see below. Index calculus can be applied to a discrete logarithm in Jacobians of
hyperelliptic curves.

Let C be a hyperelliptic curve of genus g ≥ 2 over a finite field Fq of characteristic
p and G a cyclic subgroup in Pic0

C .
As factor base we choose points in Pic0C with u(X) irreducible of degree bounded

by B, a chosen smoothness bound. A divisor is said to be B-smooth if all the prime
divisors in its decomposition have degree at most B.

This leads to the historically first algorithm to compute discrete logarithms in
Picard groups of hyperelliptic curves. It is due to

Adleman, Demarrais, and Huang.
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Theorem 5.1 For log q ≤ (2g + 1)1−ε, there exists a constant c ≤ 2.18 such that
the discrete logarithms in JacC(Fq) can be computed in expected time Lq2g+1(1/2, c).

This remarkable result gives an subexponential algorithm for “large” genus. But
much more important for practical applications are exponential algorithms, which
weaken the DLP for small but realistic genus.

The first groundbreaking result is

Theorem 5.2 (Gaudry) Let C be a genus g ≥ 2 hyperelliptic curve defined over
a finite field Fq. If q > g! then discrete logarithms in JacFq

(C) can be computed in
expected time O(g3q2+ε).

Since the expected size of Pic0
C(Fq) is qg we are, for g > 4, far away from the generic

security bound, and so we have to exclude hyperelliptic curves of genus ≥ 5 if we
want a DL-system in Picard groups.
But Gaudry’s result can be sharpened. N. Thériault suggested to use “large primes”
as well as the original elements of the factor base consisting of points on the curve
of small degree.
With many more refinements (Diem, Gaudry, Thé riaut, Thomé)) one gets

Theorem 5.3 There exists a (probabilistic) algorithm which computes the DL, up
to log-factors, in the divisor class group of hyperelliptic curves of genus g in expec-
ted time of O(q(2−2/g)).

This rules out g = 4 for hyperelliptic curves.
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5.2 Index-calculus in Picard groups in curves with plane mo-
dels of small degree

The following is mainly work of C. Diem. He gives an algorithm for computing
discrete logarithms in JC(Fq) assuming that one has a plane curve C′ of degree d.
We recall that for non-hyperelliptic curves d = 2gC − 2 is possible, and for hyperel-
liptic curves d ≥ gC + 1.
So the minimal degree of plane models of hyperelliptic curves of genus ≥ 3 is larger
than the degree of such models for non-hyperelliptic curves.

Using factor bases constructed with the help of Semaev polynomials and using
a large amount of ingredients from abstract algebraic geometry (e.g. member ship
tests for zero-dimensional schemes) Diem succeeds to prove

Theorem 5.4 Fix d ≥ 4 such that d or d− 1 is prime.
Then the DLP in Pic0

C of curves birationally equivalent to plane curves of degree d

can be solved, up to log-factors, in expected time O(q2− 2
d−2 ).

For genus 4 and non-hyperelliptic curve C we get d = 6 and so the hardness of D
is bounded, up to log-factors, by O(q3/2). Since the expected group size is q4 this
is too far away from the generic complexity, and it is not advisable to use (hyperel-
liptic or not hyperelliptic) curves of genus 4 for DL-systems.

Remark 5.5 The result may be a bit disappointing: Remaining candidates for DL-
systems in the zoo of curves over finite fields are and so remaining candidates are:
elliptic curves, curves of genus 2 and hyperelliptic curves of genus 3, i.e.
only curves curves given by equations (in char 0):

Y 2 = Xn + ....

with 3 ≤ n ≤ 8. Even in this case there are in rather a lot of cases transfers to
systems known to be weak:
Correspondences to non-hyperelliptic curves for g = 3
Duality maps e.g. for supersingular curves
Weil descent and related index-calculus if Fq is not a prime field.

So: Take for C an elliptic curve E or a curve of genus 2 (and avoid some weak
instances) and , maybe, very special curves of genus 3 (e.g. with automorphisms of
order 4) and for Fq a prime field Fp.
Then we shall find (carefully chosen) elliptic curves defined over prime fields Fp,
which are, till today, exponentially secure under algorithms with classical computers.
Example 3.) from above is a instance with security level of AES128.

But as said already, there will be no resistance against quantum computing.
But at the very end of the lecture we shall present two systems for key exchange in
the spirit of Diffie-Hellman with more Q-bit security.

The main remaining task will be point counting on curves of small genus over Fq.
To do this we shall need more about Galois representations.
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6 Fundamental groups and Galois representations

Comparing with the theory of Riemann surfaces we see that there is still an im-
portant tool missing: What are the analogues of fundamental groups and their
operation on cohomology groups, how do topological and arithmetic objects com-
bine? Obviously, the Zariski topology has to be replaced by a stronger topology.
The great idea of Grothendieck was a generalization of the theory of topological
spaces by Grothendieck topologies:
Environments are replaced by covers with appropriate algebraic-geometric proper-
ties.
We only touch this fascinating area very superficially and look at the
Etale Topology: A X scheme is endowed with the system of étale (finite and
unramified) covers

f : Y → X

with the well known functorialities of such covers, i.e. under scalar extensions.
Projective limits are used to construct “universal” covers and fundamental groups
(which are, in the profinite topology, compact by definition).
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Example 1:
Be K a field.
Let L be a finite extension of K, and fL : SpecL → SpecK given by the inclusion
iL : K ↪→ L.
fL is étale if and only if L/K is textbf separable.
The universal cover is Ks, the separable completion of K, and the fundamental
group is

GK = AutK(Ks).

Quotients of this group can be obtained by special covers, for example, the maxi-
mum abelian extension is K has the fundamental group GK/[GK , GK ].

Example 2:
Let X = SpecOK be an arithmetic curve.
Then, the universal cover in étale topology is the ring of integers in the maximal
unramified extension Knr of K. The fundamental group is G(Knr/K).
The fundamental group of Z is trivial (Minkowski). In general we do not know much
about this group.
But if one goes to the maximal-abelian extension, one obtains a finite extension
whose Galois group is isomorphic to PicK , and the class theory theory rules the
game.
If one likes, one can formulate this theory completely in the language of étale coho-
mology.
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Example 3:
Of particular interest is the case that X = C is a projective curve over a field K0

with Char(K0) = 0.
In this case, the properties of K0 interplay with those of the curve: On the one
hand you have covers by constant field extensions of K0, on the other hand, there
are “geometric ” covers with fixed constant fields. Unfortunately, such covers do
not behave nicely under composition, and the situation is very well reflected by the
exact (and, in general non-split) sequence of Galois groups:

1→ GKC·K0
→ GKC → GK0

→ 1.

Etale topology is concerned with unramified extensions D of C.
Since separable constant field extensions are unramified, we have the basic sequence

1→ Π1(C × Spec(K0))→ Π1(C)→ GK0
→ 1

where Π1(C × Spec(K0)) is the geometric fundamental group.

Remark 6.1 (Anabel geometry according to Grothendieck)

1. The above sequence yields a Galois representation

ρC : GK0
→ OUT (Π1,g(C))

.

2. If K0 is contained in a p- adic field and if the genus of C is ≥ 2, then C is
uniquely determined by ρC (Mochizuki).

3. If K0 = Q and gC ≥ 2 then ρC is injective.
So you can study the Galois group of Q using the fundamental groups of curves
over Q.

30



` -adic Galois representations . Let ` be a prime different from char((K0).
Following Grothendieck we can assume without loss of generality that K0 ⊂ C and
compare algebraic covers with analytic covers.
From the Riemann existence theorem it follows that every finite group can be rea-
lized as a Galois group over KC · K0(T ) and that Π1(C × Spec(K0)) is the com-
pactification in the Krull topology of a free group with 2gC generators modulo one
commutator relation.

So the maximal-abelian pro- ` quotient ˜Π1(C × Spec(K0))` as an abelian group is
isomorphic to Z2gC

` and ρC induces an ` -adic representation

ρ̃`C : GK0
→ Aut(Q2gC

` ).

ρ̃`C is the ` -adic completion of H1(C)et.
Conjecture of Fontaine-Mazur: Every irreducible ` -adic Galois representa-

tion of a number field with only finitely many ramification points and satisfying a
semi-stability condition “comes from” a cohomology group of a smooth projective
variety.

“Geometric class theory theory”: Tate modules of Picard groups .
We find a geometrically constructed representation space for ρ̃`C :
GK0

operates on Pic0
C(K0) in a natural way.

For n ∈ N we denote by Pic0
C(K0)[`n] the subgroup of elements whose order divides

`n.
Fact: Pic0

C(K0)[`n] is isomorphic as Galois module to

˜Π1(C × Spec(K0))`/`
n × ˜π1(C × Spec(K0))`.

Definition 6.2 The Tate module TC,` is the GK0
module

proj− limPic0
C(K0)[`n].

ρ̃`C the Galois representation with representation space TC,`
⊗

Q`, and the repre-
sentation ρC,`n := ρ̃`C

⊗
Z/`n has as a representation module Pic0

C(K0)[`n].
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7 Etale Isogenies of Elliptic Curves

Let E be an elliptic curve over K0 and assume first that K0 = K0.
Then Π1(E) is the profinite free abelian group with two generators. Finite quotients
of Π1(E) are subgroups of Z/n× Z/n for large enough n.
By Galois theory these quotients correspond to unramified finite covers of curves

η : E ′ → E .

By the Hurwitz genus formula it follows that E ′ is also an elliptic curve.
We can assume that η maps PE′,∞ to PE,∞, and then η is a morphism of the
projective group schemes E ′, E .
Hence the kernel Ker(η) is closed and so an étale group scheme.
In particular, | ker(η)(K0)| = deg(η). Now take K0 arbitrary and E , E ′ defined over
K0.
Then η is defined over K0 iff ker(η) is GK0 -invariant.
η is an example for the following definition:

Definition 7.1 Elliptic curves E and E ′ are isogenous over K0 iff there is a finite
morphism η : E ′ → E.
If E = E ′ then η ∈ End(E), the ring of endomorphisms.

Remark 7.2 There are important inseparable and so non-étale isogenies of elliptic
curves. These are detected by the “finite-flat” topology, their kernels are finite-flat
group schemes (e.g. local group schemes).
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7.1 Isogeny graph

Let K0 be arbitrary. As explained, GK0 operates on the geometric fundamental
group.
It follows: Let E , E ′ be elliptic curves over K0 and let

f : E ′ → E

be a separable isogeny.
Then f is defined over K0 if Ker(f) is invariant under GK0

.
Let n be prime to the characteristic of K0.
f is cyclic of order n if Ker(f) ∼= Z/n. Cyclic isogenies can be composed by isogenies
of prime degree.

Definition 7.3 The isogeny graph ΣK0(E) of E over K0 has as vertices the isomor-
phism classes (over K0 of elliptic curves E ′ isogenous to E over K0, and as edges
separable isogenies of prime degree.
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7.2 Modular Curves

We assume that N ∈ N is prime to Char(K0) and study for over fields L of K
isogenies η of elliptic curves E/L whose kernel CN is cyclic of order N . The functor
L 7→ {(E, ηN )/L/ ∼=} is a (coarse) moduli functor FN .
There is a classical explicit construction of the modular curve X0(N) as quotient
of the complex upper half plane which presents this functor. Explicit construction
over C

H := {z ∈ C; Im(z) > 0}

and
H∗ := H ∪Q ∪∞.

Γ0(N) :=
{
α =

(
a b
c d

)
∈ SL2(Z)

}
with c ≡ 0 mod N
operates on H∗ by

z 7→ (az + b)/(cz + d).

X0(N)C := Γ0(N)\H∗.

X0(N) is a compact Riemann surface and hence a projective curve over C.
By construction the curve presents the complex points of the moduli functor FN
and hence, By general principles, X0(N) is defined over Spec(Z).
This curve has a very rich algebraic and analytic structure, e.g. the Galois represen-
tations on torsion points of Pic0(X0)(N)) are direct sums of odd two-dimensional
representations of GQ.

7.2.1 Computational Aspect

An explicit equation for an affine model of X0(N) is given by the classical modular
polynomial φ(j, jN ).
It allows an effective computation of isogenies (as functions including the determi-
nation of the image curve) at least if N is of moderate size).
Result:(Vélu, Couveignes, Lercier, Elkies, Kohel, ...)
The cost for the computation of an isogeny of degree ` of an elliptic curve E over
Fq is O(`2 + ` log(`) log(q)).

34



7.3 Arithmetic of Galois Representations

Let K be a number field with absolute Galois group GK , which is compact in the
profinite topology.
Let R be a topological ring.
A Galois representation is a continuous homomorphis

ρ : GK →Mk×k(R).

The most important example for R are Z/n, Fq and Z`.
Because of continuouty it follows that Ker(ρ) is closed.

Define Kρ := K
Ker(ρ)

.
ρ is unramified in P ∈ Spec(OK) if Kρ/K is unramified in P.
Our standard assumption is: The set of ramified primes is finite.
The conductor Nρ of ρ is “essentially” the product of the prime ideals (mayby with
small exponents), which are ramified in ρ.
(ρ heißt geometrisch (s.o.)).

7.4 Semi-simple Representations

Definition 7.4 For σ ∈ GK denote by

χρ(σ)(T )

the charakteristical polynomial of ρ(σ).
ρ is semi-simple if ρ is determined by

{χρ(σ)(T );σ ∈ GK}

up to equivalence.

To emphasize the importance of this property we remark:
The key result for the proof of the Theorem of Faltings is that

ρ̃`C

attached to Tate modules of Picard grops of curves over K is semi-
simple.
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7.5 Frobeniusautomorphismen

The key for the intimate relation between arithmetic in number fields K with its
Galois group GK is the study of Frobenius automorphisms.

Definition 7.5 Let l be a prime ideal of OKcontaining the prime number `, and
take σ ∈ GK .
σ is a Frobeniusautomorphismus attached to l if there is a prime ideal l′ in Z̄
containing l such that for all x ∈ Z̄ we have:

σ(x)− x` ∈ l′.

For given l there are (infinitely many) different Frobeniusautomorphismen ,
but they are all conjugate in GK ,so their charakteristical polynomial attached to
representations are equal. If the representations are semi-simple we can neglect the
different possibilities and choose for l one Frobeniusautomorphismus σl.

Theorem 7.6 Density Theorem of Čebotarev
A semi-simple representation ρ is determined by

{χρ(σl)(T )}l∈Spec(OK)\S

, where S is an arbitrary finite set containing (0).
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7.6 Two-dimensional odd Galois representations

In this section, we are interested in two-dimensional representations ρ.

Definition 7.7 ρ is odd if for every complex conjugation τ ∈ GK one has

det(ρ)(τ) = −1

7.6.1 Representations on elliptic curves

Let E be an elliptic curve over K that we extend to a (minimal) curve E över OK .
E has good reduction outside a finite set SE .
The conductor of E is NE =

∏
P∈SE P

eP with eP = 1 if E is semi-stable in P.
It follows that ρ̃`E is a two-dimensional representation that is semi-simple and unra-
mified outside of NE . GK induces on E(K[n]) an odd (Weil pairing) representation

ρn,E : GK → Aut(Z/n× Z/n)

.

Theorem 7.8 (special case of Faltings and Tate results)
The following items are equivalent (with a number n0 depending on NE)

1. E is K- isogenous to E ′.

2.
ρ̃`E
∼= ρ̃`E′

for one (and therefore all) `.

3.
χρ̃`E (σp) = χρ̃`E′ (σp)

for almost all prime ideals p ∈ Spec(OK) \ (SE ∪ {l; ` ∈ l}.

4. (Effective version of Čebotarev):

χρn,E = χρn,E′

for an n ≥ n0.
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7.6.2 The Frobenius Endomorphism

We are now motivated to calculate χρ̃`,E (σp) for ` /∈ p.

1. “ Hensel’s Lemma ”: σp can be identified in a natural way with the Fro-
benius automorphism Frobpd of the field OK/p = Fq, which is a topological
generator of GFq , and

χρ̃`,E (σp) = χρ̃`,Ep (Frobpd)

.

2. The Galois element Frobpd has a geometric interpretation: It fixes the equa-
tion of Ep and operates on the points by exponentiation, so it induces the
Frobenius endomorphism φp ∈ End(Ep).
φp is a purely inseparable isogeny of degree pd.

3. Let ` 6= p.
The characteristic polynomial of ρ̃`,Ep is an integer normalized polynomial

χEp(T ) = T 2 − Tr(φp)T + pd

independent of `, and for n prim to p we get

χρn,Ep
(φp)(T ) ≡ χEp(T ) mod n.

4. Deuring: φp can be interpreted as an imagina äry-quadratic number, and so

Tr(φp)2 ≤ 4pd.

The isogeny φp − id is separable and its kernel is Ep(Fq).

Corollary 7.9 3

|Ep(Fq)| = |pd + 1− Tr(φp)| ≤ 2
√
pd.

3This is the Hasse inequality analogous to the Riemann Hypothesis proved by Weil for g > 1.
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7.7 Serre’s Conjecture and FLT

Recall: The Conjecture of Serre(∼ 1986), which is now the

Theorem 7.10 (Khare-Wintenberger-Kisin (∼ 2006):
Odd two-dimensional irreducible (continuous ) Fq-representations ρ of the automor-
phism group GQ of the algebraic numbers Q̄ are given by its operation on points of
finite order of the Picard groups of modular curves X0(N) with nebentype.
In addition, the minimal possible level N and the twist character are obtained from
the arithmetical data of ρ.

Application: FLT:
For

Ap −Bp = Cp

and
EABC : Y 2Z = X(X −Ap)(X −Bp)

the representation ρp,Ef has conductor 2 · p, and so is presented by Pic0(X0(2)[p],
which is a curve of genus 0!
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7.8 Point counting on elliptic curves: The SAE Algorithm

The theoretical results together with the corollary 7.9 allow us to calculate |Ep(Fq)|
in polynomial time.
The idea of R. Schoof is:
Compute the operation from φp to Ep[`k] for small `, k with

∏
`k ≥ 2

√
pd and use

then CRT .
For this calculation, use the explicitly known “ classical n-divisional polynomials ”
Ψn.
Disadvantage: deg(Ψn) ∼ n2, and hence the Schoof algorithm is too slow.
Idea of Atkin-Elkies: Compute instead of points with cyclic groups, and use the the
“ classical modular polynomials ” φn of degree ∼ n.

Theorem 7.11 (SAE)
|Ep(Fq)| can be calculated with complexity O((d log p)4).
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7.9 Point counting for curves of genus 2 and 3

As said, the other candidates for DL-systems are Picard groups of hyperelliptic
curves of genus 2 and 3.
We can try to follow the ideas of SAE in order to determine |Pic0

C | for curves C over
fields Fq.
In principle, this is possible for general abelian varieties and a polynomial time
algorithm is due to Pila in the spirit of Schoof.
But this algorithm is much too slow for applications. For curves of genus 2 there
are (rudimentary) results for “modular” polynomials and for division polynomials.
Gaudry and Schost use this and succeed (in rather a tour de force) to compute
Picard groups of curves of genus 2 in cryptographically interesting ranges. For curves
of genus 3 this seems to be hopeless nowadays.
But one can use curves with special properties, for instance, one looks for curves
such the the ring of endomorphisms OC of the Jacobian variety is large: C has real
multiplication and so OC contains an order in a totally real number field of degree
gC , or even a CM-field, i.e. an imaginary quadratic field over a totally real field of
degree gC . It is well-known that the latter case leads to classical class field theory
(Shimura-Taniyama theory) and hence the Frobenius endomorphisms are given by
prime ideals in OC , and real multiplication can be used to accelerate the point
counting algorithms immensely (work of Gaudry et.al.).
To construct such curves one first has to determine the period matrix of the Jacobian
and then their (Shioda) invariants over the complex numbers. By reduction theory
modulo p and by using Mestre’s algorithm one then determines equations for C over
Fq.
The main source for curves with real multiplication are curves, whose Jacobian are
gC-dimensional siple factors of the Jacobian variety J0(N) of the modular curve
X0(N).
This method works very efficiently for curves of genus 2, and since they are equipped
with a very fast addition and, as far as we know, as secure as elliptic curves, Picard
groups of curves of genus 2 are a competitive alternative to elliptic curves.
For curves of genus 3 one has a big problem: Most curves of genus 3 are non-
hyperelliptic (since the hyperelliptic locus is of co-dimension 1 in the moduli space
of curves of genus 3) and so not usable for cryptography. Hence suggestions for
curves of genus 3 are mostly restricted to curves C with complex multiplication field
R(
√
−1) where R is a totally real cubic field with class number 1: The existence of

an automorphism of order 4 on the Jacobian forces C to be hyperelliptic.
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8 Diffie-Hellman Key Exchange with Isogenies

We end the lecture by sketching two Key Exchange systems based on elliptic curves
but not on the discrete logarithm, which could be more resistant against quantum
computers.
We have to use the theory of isogenies of elliptic curves over finite fields and beautiful
theoretical results mainly due to M. Deuring.

8.1 Isogenies of Ordinary Elliptic Curves

Theorem 8.1 (Deuring)
Let E be an elliptic curve over a field K0.
E is ordinary iff End(E) is commutative.

1. Assume that Char(K0) = 0. Then E is ordinary and EndK0
(E) = Z (generic

case) or EndK0
(E) is an order OE ⊂ Q(

√
−dE), dE > 0 (CM-case).

Take E with CM with order OE.
Let SE be the set of C-isomorphy classes of elliptic curves with endomorphism
ring OE.
Then Pic(OE) acts in a natural and simply transitive way on SE, hence SE
is a PHS under Pic(OE):
For c ∈ Pic(OE), A ∈ c and C/OE = E0 we get
c · [E0] is the class of C/A.

2. (Deuring’s Lifting Theorem)
Let E be an ordinary elliptic curve over Fq. Then there is, up to C-isomorphisms,
exactly one elliptic curve E with CM over a number field K such that

(a) there is a prime p of K with

Ep ∼= E,

and

(b)
End(E) = End(E) = OE

with OE ⊂ an order in an imaginary quadratic field.

8.1.1 Key Exchange à la Couveignes-Stolbunov

Let E0 be an ordinary elliptic curve over Fq with End(E0) = O.
Define SE0 as set of isomorphy classes of elliptic curves over Fq with ring of endo-
morphisms O.
Using Deuring’s lifting and the theory of complex multiplication we get that SE0

is
a Pic(O)-set.
Hence we can use it for Key Exchange:
The partner P choses c ∈ Pic(O) and publishes the j-invariant of c · E0.
The exchange is not as fast as DL but feasible since one finds enough isogenies that
are composites of isogenies of small degree (smoothness).
The security depends on the hardness of the following problem:
Find an isogeny between two isogenous elliptic curves.
The best “classical” result I know is
Kohel, Galbraith, Hess, Smart et al.:
The expected number of bit-operations for the computation of an isogeny between
ordinary elliptic curves over Fq with endomorphism ring OKE

is

O(q1/4+o(1) log2(q) log log(q)).
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But with quantum computer this complexity is subexponential (Childs-Jao-
Soukharev), and the used fact is that SE0 is a G-set with the abelian group
G = Pic(O).

8.2 Supersingular Elliptic Curves

We now assume that E is a supersingular.
Again, the following results are mostly due to Deuring.

1. Up to twists, all supersingular elliptic curves in characteristic p are defined
over Fp2 , i.e. their j-invariant lies in Fp2 .

2. |E(Fp2 | = (p± 1)2, and the sign depends on the twist class of E.

3. EndFp
(E) is a maximal order in the quaternion algebra Qp, which is unramified

outside of ∞ and p.

8.2.1 The Key Exchange System of De Feo

Take
p = ra · sb · f − 1

with p ≡ 1 mod 4.
Then

E0 : Y Z = X3 +XZ2

is a supersingular elliptic curve over Fp2 .

Categories Ci (i = 1, 2) Objects isomorphism classes of supersingular E over Fp2
isogenous to E0 and hence with |E(Fp2)| = (ra · sb · f)2.
Morphisms in C1: ϕ with | ker(ϕ)| dividing ra

Morphisms in C2: ψ with | ker(ψ)| dividing sb.
In this category the pushouts exist.

For additional information choose P1, P2 of order ra and Q1, Q2 of order sb in
E0(Fp2).
Key Exchange: The Partner P1 chooses n1, n2 ∈ Z/ra and the isogeny

η : E0 → E0/ < n1P1 + n2P2 >=: E1.

P2 chooses m1,m2 ∈ Z/sb and the isogeny

ψ : E0/ < m1Q1 +m2Q2 >=: E2.

P2 sends
(E2, ψ(P1), ψ(P2)).

P1 can compute the common secret, the pushout of η and ψ) as

E3 := E2/ < n1ψ(P1) + n2ψ(P2) >

Again Security depends on computing an isogeny of two elliptic curves.
State of the art: The best known algorithms have exponential complexity p1/4

(bit-computer) resp. p1/6 (quantum computer) , and so one can hope that a prime
p with 768 bit yields AES128 security level, a very small key size.
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In contrast to the ordinary case the groups around like class groups of left ideals
in maximal orders are not abelian, and so the hidden shift problem is not solved
till now in subexponential time.
But of course, there is lot of theory around, e.g. maximal orders in Quot(End(E0))
correspond to definite ternary quadratic forms of discriminant p ...
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