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A NOTE ON GENERATORS OF EVEN-NUMBERED K-GROUPS
OF RINGS OF INTEGERS

Wojciech Gajda and Cornelius Greither

Abstract. In this note we give explicit generators for étale even-numbered K-groups

of the ring of integers in some cyclotomic fields, using generalised symbols and standard

results in cyclotomic Iwasawa theory.

1. Introduction

In this short note we intend to give explicit generators for étale even-numbered
K-groups of the ring of integers in some cyclotomic fields. These K-groups are finite,
often nontrivial, and interesting; for example, Ket

2n(Z[ 1l ]), for an odd natural number
n and an odd prime l, is expected to be cyclic, and this cyclicity is equivalent to the
Iwasawa conjecture on cyclicity of the minus part of the l-Sylow subgroup of the class
group of the cyclotomic field Q(µl), see for instance [Ga] or [Ku].

Unpublished work of Voevodsky and Rost implies that the étale K-groups agree
with the corresponding algebraic K-groups of Quillen, in the l-part for every odd
prime l, see for instance Theorem 70 in [We]. However we prefer to stay within the
étale cohomology framework throughout this paper.

The generators of the K-groups which we construct arise as images under transfer
of certain multiplicative combinations of generalised symbols. Indeed, for K2 we do
have symbols in the usual sense. The generalised symbols that we use always involve
non-units and therefore only lie in the K-group of a certain field, and the whole point
is to choose the multiplicative combinations of them in such a way that we get all
elements of the K-group of the appropriate ring of integers, and nothing else.

Our final result (Theorem 3.2) does not make much sense without the constructions
which go into it, so we choose not to describe it in full detail here. For the ease of
the reader, the construction is first explained in a special setting in Section 2 (the
main result of that section is Proposition 2.3). A reader just interested in the final
statement is invited to skip Section 2 completely (at least at the first reading).

The techniques should certainly work in greater generality, but we decided to keep
the setting simple and very explicit. We use some well-known results on Stickelberger
elements and a fairly simple-minded algebraic Lemma 3.1. Even though we use class
groups in our proofs, it does not seem that our methods will yield results on class
groups; they only work for higher K-groups.
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2. The setting, and a special case of our construction

Let l be an odd prime, let F = Q(µl) and F+ = Q(µl)+ be the cyclotomic
field and its maximal real subfield, respectively. We also consider the cyclotomic
field E = Q(µlk), where the exponent k will be specified below. Let n be an odd
natural number. In what follows, let S denote a finite set of finite primes of F ;
however, in context, this will also indicate the set of primes of E above that finite
set. In this note we will identify the étale K-theory groups Ket

2n(OL,S , Z/lk) and
Ket

2n+1(OL,S , Z/lk), of the ring of S-integers of a number field L (where S contains
the primes of L over l), with the étale cohomology groups H2(OL,S , Z/lk(n+1)) and
H1(OL,S , Z/lk(n+1)), respectively via the Dwyer-Friedlander isomorphisms, which
respect transfers for finite field extensions and preserve the multiplicative structure
(cf. [DF]). We will also use identifications: Ket

2n(OL,S) = H2(OL,S , Zl(n+1)) and
Ket

2n+1(OL,S) = H1(OL,S , Zl(n+1)), which follow from the Dwyer-Friedlander iso-
morphisms by passing to the inverse limits over k. By definition Ket

2n(OF,S)[lk] is the
lk-torsion part of H2(OF,S , Zl(n + 1)).

Consider the homomorphism

α : O×
E,S ⊗ Z/lk(n) −→ Ket

2n(OF,S)[lk]

which we define using the cohomological construction of the étale K-group. There is
a map α′:

O×
E,S ⊗ Z/lk(n) → H1(OE,S , Zl(1))⊗H0(OE,S , Z/lk(n)) → H1(OE,S , Z/lk(n + 1)),

where the first map is standard in the first tensor factor (and trivial in the other), and
the second map is the cup product. To obtain α, we then follow up this map with the
canonical epimorphism b (the Bockstein map) from the group H1(OE,S , Z/lk(n + 1))
to H2(OE,S , Zl(n + 1))[lk], and then with the transfer map down to the analogous
group with E replaced by F . (Of course one could interchange the Bockstein map
and transfer, in the obvious sense.)

The main result of this section is Prop. 2.3 which shows that the étale even-
numbered K-groups of Z[ 1l ] can be described by means of the map αQ defined as
α followed by transfer from F to Q. To this end we have to place αQ into a certain
commutative diagram. Before we do this, let us give a comparison result, to put the
map α into context.

Lemma 2.1. The above definition of the map α gives the same map as the construc-
tion in Lemma 2.3 of [BG1] (where in loc. cit. we replace Q by F ).
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Proof: Consider the following diagram

O×
E,S ⊗ Z/lk(n) = //

αk

��

O×
E,S ⊗ Z/lk(n)

α′

��
Ket

2n+1(OE,S , Z/lk)
∼= //

Tr

��

H1(OE,S , Z/lk(n+1))

Tr

��
Ket

2n+1(OF,S , Z/lk)
∼= //

b

��

H1(OF,S , Z/lk(n+1))

b

��
Ket

2n(OF,S)[lk]
∼= // H1(OF,S , Zl(n+1))[lk]

where the composition of vertical maps on the left hand side is the map of Lemma
2.3 in [BG1], and the composition of vertical maps on the right hand side is the
cohomological counterpart of the map α. The horizontal maps in the diagram are
the Dwyer-Friedlander isomorphisms. The map αk was defined in [BG1] as the com-
position of α′ with the inverse of the Dwyer-Friedlander isomorphism. This makes
the upper square commute. Commutativity of the lower squares follows, since the
Dwyer-Friedlander isomorphisms commute with transfers and with the connecting
homomorphisms b in K-theory and étale cohomology. �

Recall from the paper [BG1] that the map α is surjective if the norm map

NE/F : O×
E,S −→ O×

F,S

is onto, for which it suffices that the set S contains the prime over l and a set of
primes p of degree one of OF such that the primes q above these p generate the class
group of E.

We will need the Galois groups G = Gal(E/F ), G̃ = Gal(E/Q), and ∆ =
Gal(F/Q). Note that G̃ = G×∆.

Let us treat a particularly simple situation in this section: we assume until the end
of the section that the minus part of the l-part of the class group of OF is cyclic as
a Zl[∆]-module, hence the minus part of the l-part of the class group OE with k ≥ 1
is cyclic over Zl[G̃] (codescent plus Nakayama’s Lemma). Take a Galois module
generator q of Cl(OE){l} (the l-part of the class group of OE) and let S consist of the
prime p below q and the prime above l. The standard Iwasawa module X−

F is then
cyclic over Λ = Zl[G][∆], and isomorphic to Λ−/(Θ∗), where Θ∗ is the Stickelberger
element multiplied by a generator of the principal Λ-ideal Ann(µl∞), and the subscript
minus at Λ means modding out by 1+j (with j meaning complex conjugation). (Note:
We will later use Θ∗, or rather its image in Zl[G̃], as an exponent; in order for this
to make sense, one simply takes a sufficiently good approximation in Z[G̃]. All our
arguments are carried out modulo a high l-power.)

We now let αQ be α followed by the transfer from F to Q. Then αQ is again onto
by a standard argument, and this remains so if we take the plus part of its domain:

αQ : O×−
E,S ⊗ Z/lk(n) −→ Ket

2n(OQ,S)[lk].
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We now choose k such that lk is the number of elements of the group Ket
2n(Z[ 1l ]).

Let q be the rational prime below p and q. Then lk divides q−1, and the group
Ket

2n−1(Fq) is of order qn−1, and this is exactly divisible by some power lm ≥ lk

depending only on q and n. The map val in the commutative diagram (d1) below
comes from the valuation map at every conjugate of q (note that G̃ acts freely on the
set of these conjugates), and ∂ comes from the localisation sequence:

0 → Ket
2n(Z[

1
l
])[lk] → Ket

2n(Z[
1
lq

])[lk] → Ket
2n−1(Fq)[lk].

The map c is just the epimorphism Z/lk[G̃](n) → Z/lk[G̃](n)G̃ followed by the
canonical isomorphism identifying these coinvariants with Z/lk. Finally, the group
Ket

2n−1(Fq){l} is identified with the Fq-rational points of µ⊗n
l∞ (note also that the su-

perscript et can certainly be omitted here), and its lk-torsion is visibly generated by
ζ⊗n, where ζ ∈ Fq is the image of a chosen primitive lk-th root of unity ζlk . The map
β sends ζ⊗n to −1 ∈ Z/lk by definition; it is an isomorphism.

(d1)

Ket
2n(Z[ 1l ])[l

k]
� _

��
O×−

E,S ⊗ Z/lk(n)

val

��

αQ // // Ket
2n(Z[ 1

lq ])[lk]

∂

��
Ket

2n−1(Fq)[lk]

β

��
Z/lk[G̃](n)

c // Z/lk

The kernel of ∂ is the image of the vertical inclusion map placed above it.

Lemma 2.2. The above diagram is commutative.

Proof: In the whole argument, we will identify Z/lk(1) with µlk , where 1 maps
to the chosen root ζlk of unity. Then Z/lk(n) is generated by 1 in additive notation
(twist is hidden), or by ζ⊗n

lk
in multiplicative notation (twist is visible).

(1) For n = 1 one can check that αQ(u⊗ ζlk) = TrE/Q{u, ζlk}, where Tr stands for
transfer, and inside the Tr term we have a Steinberg symbol in K2. (It was shown
by Tate that the Steinberg symbol corresponds to cup-product on the cohomological
side, cf. Theorem 3.1 in [Ta]).

(2) Let v be a place of E above q, Ev the v-adic completion, and Fv the residue
field of Ov, the integers of Ev. We look at a similar diagram in this local situation:

O×
v ⊗ Z/lk(n)

αv //

val

��

Ket
2n(Ov)[lk]

∂v

��
Z/lk(n)

β−1
v // Ket

2n−1(Fv)[lk].

The isomorphism βv sends ζ⊗n to −1 ∈ Z/lk(n). We claim this diagram commutes.
Since the connecting homomorphism ∂v (which comes from the localisation sequence
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in étale cohomology) commutes with cup product, and from the definitions, we see
that we only need to deal with the case n=1. (The case n=0 is excluded!) Here the
upper horizontal map is given by symbols: u ⊗ ζlk 7→ {u, ζlk}Ev

, and ∂v is the tame
symbol, mapping {u, ζlk}Ev

to ζ
−val(u)

lk
, where val is the v-adic valuation map. From

this, the commutativity of the diagram is clear.
(3) The lemma now follows from the compatibility of α and ∂ with localisation and

transfer. To see this, the following diagram should be helpful (v always runs over the
E-places above q; obvious localisation maps have no labels):

O×
E,S ⊗ Z/lk(n) α //

��

Ket
2n(OE,S)[lk] Tr //

vvlllllllllllll
Ket

2n(Z[ 1
lq ])[lk]

∂

��

∏
v O×

v ⊗ Z/lk(n)
Q

αv //

Q
valv

��

∏
v Ket

2n(Ov)[lk] Q
∂v

((RRRRRRRRRRRRR

∏
v Z/lk

Q
β−1

v //

∼=
��

∏
v Ket

2n−1(Fv)[lk] // // Ket
2n−1(Fq)[lk]

Z/lk[G̃]
β−1c // Ket

2n−1(Fq)[lk].

The right hand map in the third row is a norm map, more precisely on Ket
2n−1(Fv)[lk]

it is the canonical identification map wth Ket
2n−1(Fq)[lk]. The commutativity of the

upper right hand pentagon can be taken from [Sou], p.276. �

We now use Diagram (d1) to deduce an important property of the map αQ.

Proposition 2.3. The image of the map αQ is already contained in Ket
2n(Z[ 1l ])[l

k]
and im αQ = Ket

2n(Z[ 1l ]) is generated by αQ(x⊗ 1), where x is a generator of qΘ∗ .

Proof: By Stickelberger’s theorem we have indeed qΘ∗ = (x) for some x ∈ O×
E,S .

The left vertical map in the diagram (d1) sends x to Θ̄∗ ∈ Z/lk[G̃](n)+. Given
the definition of the map c, this means that the composition of the left vertical and
the lower horizontal map in Diagram (d1) sends x to the image of Θ∗ under the
composition:

Λ
∼= // Λ(n) ε // Zl

// Z/lk.

Here ε is just the canonical map identifying the Gal(Q(ζl∞)/Q)- invariants of Λ(n)
with Zl. Let us denote the first isomorphism by an exponent (n). Then by the class
number formula (cf. [BG2], Section 5), #Ket

2n(Z[ 1l ]) = [Zl : εΘ(n)
∗ ], and the left hand

side equals lk by assumption. Hence Θ∗ is annihilated by the map in the last display,
and therefore the composition of the left vertical and the lower horizontal maps of the
diagram (d1) sends x to zero. Since Θ∗ is the precise annihilator of the classgroup
of E, it follows that O×−

E,S ⊗ Z/lk(n) is generated (as a Galois module) by x⊗ 1 and
ζlk ⊗ 1. (This strongly uses the cyclicity of the class group as a Galois module!) Both
of these elements map to zero in the lower right hand corner, so this shows that the
image of αQ is contained in the kernel of ∂, which is Ket

2n(Z[ 1l ])[l
k]. Since the map
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αQ was surjective to begin with, the upper vertical map in (d1) is an equality, and
im αQ = Ket

2n(Z[ 1l ])[l
k] = Ket

2n(Z[ 1l ]).
It remains to see that the second generator αQ(ζlk ⊗ 1) is superfluous. In fact it

is zero. For n=1 this is a well-known property of symbols: before applying transfer,
ζlk ⊗ 1 maps to the symbol {ζlk , ζlk}, which is trivial by a simple calculation, For
general n we again get the trivial element already before applying transfer, as one
sees by writing ζlk ⊗ 1 ∈ O×

E ⊗ Z/lk(n) as the cup product of ζlk ⊗ 1 ∈ O×
E ⊗ Z/lk

with 1 ∈ Z/lk(n−1). �

3. The general construction

We now remove the cyclicity assumption on our class groups. Moreover we will
proceed in a more general way, descending only to F+ instead of all the way to
Q. (This could easily have been done in the previous part already, using character
decomposition for the group ∆ = Gal(Q(ζl)/Q).) Let us begin with an elementary
algebraic lemma.

Lemma 3.1. Consider a presentation

(Z/lk)s ·A // (Z/lk)s // C // 0,

where the matrix A ∈ Ms,s(Z/lk) can be lifted to a matrix Ã ∈ Ms,s(Zl) such that
d := det Ã divides lk in Zl. Then the kernel of the multiplication ·A is the image of
the multiplication by B := d−1lkad(A) : (Z/lk)s −→ (Z/lk)s, where ad(A) denotes
the adjoint matrix of A.

Proof: Since A · ad(A) is d times the identity matrix, we see that AB is zero. (The
quantity d−1lk has to be read in Zl of course.) Suppose conversely that v ∈ Zs

l is
a row vector, v̄∈(Z/lk)s its image, and assume that v̄ is in the kernel of ·A. Then
vÃ = lkw with w∈Zs

l and vÃ = wlkd−1ad(Ã) · Ã, and w′ = wlkd−1 is in Zs
l . We may

cancel Ã and get v̄ = w′B, so v̄ is in the image of multiplication by B. �

We now prepare the stage for an application of this lemma. Let k be such that
lk=|Ket

2n(OF+ [ 1l ])|, and recall that E = Q(ζlk). We denote by X the minus part of
the l-Sylow subgroup of the class group Cl(OE). Let R denote the ring Zl[G̃]/(1+j).
Since X is of projective dimension 1 (or 0) over R (see [Sch]; the argument given there
for prime cyclotomic fields works just as well in our case), and its Fitting ideal is the
principal ideal generated by Θ∗, we have a presentation of X of the form

(d2) Rs ·M // Rs // X // 0,

where M ∈ Ms,s(R) and det(M) = (Θ∗). Let R0 = Zl[∆]+ be the ring Zl[∆]/(1−j),
and let ε be the natural projection from Λ to R0. Then Ket

2n(OF+ [ 1l ]) has the same
order as [R0 : ε(Θ(n)

∗ )], by the class number formula already mentioned. Thus, if A is
ε(M (n)) taken modulo lk, then A is liftable to a matrix over R0 whose determinant d

is ε(Θ(n)
∗ ); and since the index [R0 : ε(Θ(n)

∗ )] has the exact value lk, we obtain that d
divides lk in R0.

Now let q1, . . . , qs be prime ideals of absolute degree 1 representing the generators
of X that correspond to the presentation (d2) of X. Let S consist of these primes
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and the prime above l in E. We consider the diagram:

(d3)

O×−
E,S ⊗ Z/lk(n)

val=val1⊕...⊕vals

��

α // Ket
2n(OF+,S)[lk]

∂=∂1⊕...⊕∂s

��⊕s
i=1

⊕
v|qi∩F+ K2n−1(Fv)[lk]

β

��
(
⊕s

i=1 Z/lk[G̃](n))+
c // ⊕s

i=1(Z/lk[∆])(n)+.

A few explanations: vali corresponds to qi exactly as val corresponded to q in the
previous section. The map ∂ is the localisation map for the set of F+-places below
S with the prime above l removed; its i-th component goes to the direct sum of all
K2n−1(Fv) with v being conjugate to qi∩F+. The map β is similar as in the previous
section; note that every K2n−1(Fv)[lk] is again generated by ζ⊗n, with ζ the image of
ζlk . More precisely, β maps the tuple having ζ⊗n at position qi∩F+ and 1 everywhere
else to the tuple having −1 at position i and zero everywhere else. The map c this
time is canonically induced by taking G-coinvariants. Up to obvious technical changes
(the main one being that transfer is not taken all the way down to Q but only to F+)
the argument of Lemma 2.2 proves that diagram (d3) is again commutative.

Now O×−
E,S is generated up to roots of unity (which we may neglect later on, exactly

as previously) by elements x1, . . . , xs satisfying

(xi) = qmi1
1 . . . qmis

s ,

where the mij are the coefficients of the matrix M in the presentation (d2). We
extend the diagram (d3) somewhat; ι maps the i-th standard basis vector to xi ⊗ 1.

(d4)

Z/lk[G̃]s

=

��

ι // O×−
E,S ⊗ Z/lk(n)

val

��

α // Ket
2n(OF+,S)[lk]

β∂

��
Z/lk[G̃]s

ε

��

·M // Z/lk[G̃](n)s,+ c // Z/lk[∆](n)s,+

∼=
��

Z/lk[∆]s,+ ·A // Z/lk[∆]s,+

Then val(xi) is simply the i-th row of M read in Zl[G̃] and modulo lk. Therefore
the upper left square commutes. Since c is essentially taking coinvariants of the n-th
twist, we get that c(val(xi) ⊗ 1) is the ith row of the matrix A, and so the lower
rectangle commutes as well.

We now obtain generators of K := Ket
2n(OF+ [ 1l ]) as follows:

K = α(ker(c ◦ val))
= αι(ker(c ◦ val ◦ ι))
= αι(ker(c ◦ (·M))).

Now the map αι factors through the map ε (which takes G-coinvariants), to give a
map β. Thus K = β(ker(·A)). By Lemma 3.1, the kernel of multiplication of A (the
bottom horizontal map of the diagram (d4)) agrees with the image of multiplication
by lkd−1ad(A). Lifting this back through ε, we obtain the main result:
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Theorem 3.2. Let the matrix M ∈ Ms,s(R) arise from a presentation of the l-part
of the minus class group of E as explained, and let d ∈ Zl[∆] be the image of det(M)
under ε (twist n times and send G to 1). We recall that k is chosen such that the
group Ket

2n(OF+ [ 1l ]) has order lk. Let B = (bij) be the adjoint matrix of M multiplied
by lk/d ∈ R0. Then the group Ket

2n(OF+ [ 1l ]) is generated by the set of elements

yi := α(xbi1
1 · · ·xbis

s ⊗ 1), i = 1, . . . , s.

Remark 1: By very similar arguments we can prove that the relations between the
yi’s are generated by the rows of A. Actually this is exactly what one expects, since
the size of Ket

2n(OF+ [ 1l ]) is predicted by the determinant of A. In fact one may
show a priori using Iwasawa theory and codescent that the group Ket

2n(Z[ 1l ]) has a
presentation of this type. What we have done is only to give an explicit description
of the generators.

Remark 2: If Iwasawa’s cyclicity conjecture holds (note that this conjecture is a
consequence of Vandiver’s conjecture), then we may take s=1, and everything becomes
much simpler. This is the situation considered in the first part of this note.
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