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A variational open image theorem in positive

characteristic

par Gebhard Böckle, Wojciech Gajda et Sebastian Petersen

Résumé. Nous démontrons un théorème d’image adélique ou-
verte variationnelle pour l’action Galois sur la cohomologie d’un
S-schéma propre lisse, où S est une variété lisse sur un corps
de type fini sur Fp. Un outil essentiel est un resultat récent de
Cadoret, Hui et Tamagawa.

Abstract. We prove a variational open adelic image theorem for
the Galois action on the cohomology of smooth proper S-schemes
where S is a smooth variety over a finitely generated field of pos-
itive characteristic. A central tool is a recent result of Cadoret,
Hui and Tamagawa.

Introduction

Let k be a finitely generated infinite field of characteristic p > 0, S a
smooth geometrically connected k-variety of positive dimension and f :
X → S a smooth proper morphism of schemes. Let K = k(S) be the
function field of S and let X/k(S) be the generic fibre of X . Fix j ∈ N.
For every prime number ` 6= p we define V` := Hj(XK ,Q`) and let

ρ`∞ : π1(S)→ GLV`(Q`)

be the representation of π1(S) on the Q`-vector space V`. We write

ρ : π1(S)→
∏
6̀=p

GLV`(Q`)

for the induced adelic representation
∏
`6=p ρ`∞ .

For every point s ∈ S with residue field k(s) we denote by

s∗ : Gal(k(s))→ π1(S)
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the homomorphism induced by s (well-defined up to conjugation), and
for any group homomorphism τ : π1(S) → H, we define τs := τ ◦ s∗ :
Gal(k(s)) → H as the specialization of τ at s. Note that ρ`∞,s is iso-
morphic to the representation of Gal(k(s)) on Hj(X

s,k(s)
,Q`) where Xs =

X ×S Spec(k(s)) is the special fibre of X in s, see [16, VI. Cor. 4.2].
The aim of this paper is to study the variation of the monodromy groups

ρ`∞,s(Gal(k(s))) (or ρs(Gal(k(s))), resp.) for closed points s ∈ S in compar-
ing them to the corresponding monodromy group ρ`∞(π1(S)) (or ρ(π1(S)),
resp.) of the generic point of S.

For every prime number ` 6= p let G(ρ`∞,s) (or G(ρ`∞), resp.) be
the connected component of the Zariski closure of ρ`∞,s(Gal(k(s))) (or of
ρ`∞(π1(S)), resp.) in GLV`/Q`, and define

Sgen(ρ`∞) = {s ∈ S a closed point : G(ρ`∞,s) = G(ρ`∞)}

Being in Sgen(ρ`∞) is a priori weaker than being `-Galois generic in the sense
of Cadoret-Kret (see [6, 3.1], [3, 1.5.3] and [18, § 6]). By Theorem 1(c),
however, the notions are equivalent.

The following result is the main theorem of the present work.

Theorem 1. (see Proposition 2.7, Lemma 2.1, Theorem 3.5)

(a) The sets Sgen(ρ`∞) are independent of `. Let Sgen(X /S) := Sgen(ρ`∞)
for any ` 6= p.

(b) The set Sgen(X /S) is Zariski dense in S, and in particular it is
infinite.

(c) The group ρs(Gal(k(s))) is open in ρ(π1(S)) for every s ∈ Sgen(X /S).

The above result relies on a similar result that holds if one replaces S
by its base change SFpk

under k → Fpk. This base change allows us to

apply standard tools to derive (a) and (b), and recent results from [5] by
Cadoret, Hui and Tamagawa to deduce (c). Given these results, the proof
of Theorem 1 is rather elementary.

In the case where k is a finitely generated field of zero characteristic,
Cadoret established a theorem analogous to our main theorem in the case
where X /S is an abelian scheme (cf. [3]). Her theorem offers a strong tool
to reduce the proof of conjectures about Galois representations attached to
abelian varieties over finitely generated fields of zero characteristic to the
number field case. Similarly our theorem can be used in order to reduce the
proof of conjectures about smooth proper varieties over finitely generated
fields of positive characteristic to the case where the ground field is a global
function field.

The results from [5] also give one a rather precise conceptual descrip-
tion of ρ(π1(SFpk

)), as we shall explain in Section 4, and as is presumably
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well-known to the authors of [5]: Let D`∞ denote the connected com-
ponent of the Zariski closure of ρ`∞(π1(SFpk

)), or, equivalently, the de-

rived group of G(ρ`∞) (see Theorem 1.4). In Theorem 4.1 we prove that
for s ∈ Sgen(X /S) the group ρs(Gal(Fpk(s))) generates a special adelic
subgroup in

∏
6̀=pD

sc
`∞(Q`) in the sense of Hui and Larsen [12], where

Dsc
`∞ → D`∞ denotes the simply connected cover.
After submitting our manuscript to ArXiv we were informed by Anna

Cadoret that she has a manuscript [4] with similar results, now also avail-
able on her homepage.

Notation

For a field k we denote by k an algebraic closure and by Gal(k) the
absolute Galois group of k. For a k-variety S we denote by k(S) its function
field, by |S| its set of closed points, and by π1(S) the étale fundamental

group of S with base point the geometric generic point Spec(k(S))→ S. If
char k = p, let SFpk

denote the base change of S under k → Fpk.

Suppose that V is a finite-dimensional Q`-vector space, Π is a profinite
group and ρ : Π → GLV (Q`) is a continuous homomorphism. We denote
by G(ρ) the connected component of the Zariski closure of ρ(Π) in GLV .
Then G(ρ) is an algebraic group over Q`. It is reductive if ρ is semisimple
(see [17, 22.138]). We write ρ|H for the restriction of ρ to a subgroup H of
Π, and we denote by Π+ the closed subgroup of Π generated by its pro-`
Sylow subgroups.

If Π = π1(S), then we define the set of Galois generic points with respect
to ρ as

Sgen(ρ) := {s ∈ |S| : G(ρ) = G(ρs)}.
Let K be a finitely generated field of characteristic p > 0. By L′ we

denote the set of all prime numbers ` 6= p. We call a family (ρ`∞ :
Gal(K)→ GLV`(Q`))`∈L′ of continuous homomorphisms, where the V` are
finite-dimensional Q`-vector spaces, a strictly compatible system over K
pure of weight j if there exists a smooth Fp-variety T with Fp(T ) = K such
that the following properties (i) and (ii) hold:

(i) ρ`∞ factors through π1(T ) for every ` ∈ L′.
(ii) For every t ∈ |T |, denoting by Frt ∈ Gal(Fp(t)) the arithmetic Frobe-

nius x 7→ x
1

|Fp(t)| , the characteristic polynomial of ρ`∞,t(Frt) has co-
efficients in Z, it is independent of `, and its roots all have absolute

value |Fp(t)|
j
2 .

1. Preliminaries

In this section we collect basic results, mostly not due to the present
authors, for use in later sections. Let K be a finitely generated infinite
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field of characteristic p > 0 and X/K a smooth proper scheme. Fix j ∈ N
and define for ` ∈ L′

V`(X) := Hj(XK ,Q`) and
T`(X) := Hj(XK ,Z`)/(Torsion).

Then V`(X) is a finitely generated Q`-vector space, T`(X) is a finitely gen-
erated free Z`-module and V`(X) = T`(X) ⊗ Q` for all ` ∈ L′. Let ρ`∞ be
the representation of Gal(K) on V`(X).

By Deligne’s theorem on the Weil conjectures (cf. [8, Thm. 1.6]), stan-
dard spreading-out principles, and proper-smooth base change (cf. [16,
VI. Cor. 4.2]), one has the following results.

Theorem 1.1 (Deligne). The family of representations (ρ`∞)`∈L′ is a stri-
ctly compatible system over K pure of weight j.

Theorem 1.2 (Deligne, Grothendieck).

(a) The restriction ρ`∞ |Gal(FpK) is semisimple.

(b) The group G(ρ`∞ |Gal(FpK)) is semisimple.

Proof. Part (a) is [9, Cor. 3.4.13] and due to Deligne. Part (b) is attributed
by Deligne to Grothendieck and given in [9, Cor. 1.3.9]. �

For a linear algebraic group G defined over a field, we denote by DG its
derived group.

Corollary 1.3. We have DG(ρ`∞) = G(ρ`∞ |Gal(FpK)).

Proof. Clearly ρ`∞(Gal(K)) normalizes ρ`∞(Gal(FpK)). This is preserved

under closures, so that G(ρ`∞ |Gal(FpK)) is a normal subgroup of G(ρ`∞).

In particular the quotient Q := G(ρ`∞)/G(ρ`∞ |Gal(FpK)) is a connected
linear algebraic group. Now Q contains as a Zariski dense subset a finite in-

dex subgroup of ρ`∞(Gal(K))/ρ`∞(Gal(FpK)), and the latter is a quotient

of Gal(FpK/K) ∼= Ẑ and thus Q is abelian. From the universal property

of the derived group, we deduce DG(ρ`∞) ⊂ G(ρ`∞ |Gal(FpK)). By Theo-

rem 1.2(b), we have DG(ρ`∞ |Gal(FpK)) = G(ρ`∞ |Gal(FpK)), and so also

G(ρ`∞ |Gal(FpK)) ⊂ DG(ρ`∞). �

The following combines results from [1], [7], [19] and [20], and extends a
result from [15].

Theorem 1.4. There exists a finite Galois extension Kind/K with the
following properties.

(a) For all ` ∈ L′, one has ρ`∞(Gal(Kind)) ⊂ G(ρ`∞).
(b) One has ρ`∞(Gal(FpKind)) = ρ`∞(Gal(FpKind))+ for all `� 0 in L′.
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(c) If ρ : Gal(K)→
∏
`∈L′ GLT`(X)(Z`) is the homomorphism induced by∏

`∈L′ ρ`∞, then

ρ(Gal(FpKind)) =
∏
`∈L′

ρ`∞(Gal(FpKind)).

(d) For all ` ∈ L′ the group ρ`∞(Gal(FpKind)) is an open subgroup of

G(ρ`∞ |Gal(FpKind)).
(e) If K = k(S) for a smooth k-variety S such that ρ factors via π1(S),

then one can further require that there exists a connected finite étale
cover Sind of S such that Kind = k(Sind).

Proof. The existence of a finite Galois extension Kind/K such that (a) holds
true is due to Serre (see [20, 2nd letter]); see also [14, Prop. 6.14]. It follows
from [1, Thm. 7.7], or alternatively from [7], that after replacing Kind by a
larger finite Galois extension of K also (b) and (c) hold. If K is a global
field, then (d) follows from [15, 2.2] by Larsen and Pink. We now explain
an independent proof of (d) for any finitely generated K.

By [1, Def. 5.1. and Cor. 7.4] and by (a)–(c), there exists a finite Galois
extension Kind of K satisfying the properties in (a), (b) and (c), and a
smooth Fp-variety V such that Fp(V ) = Kind and such that the restriction
ρ`∞ |Gal(Kind) factors through the fundamental group π1(V ) and such that
for each ` ∈ L′ the restriction ρ`∞ |Gal(Kind) is `-tame (cf. [1, Def. 4.2]).
After making an alteration on V and replacing Kind accordingly we can
assume that V admits a smooth compactification V such that V \ V is a
normal crossing divisor (cf. [2, Thm. 1.2]). It follows that ρ`∞ |Gal(Kind)
factors through the tame fundamental group πt1(V ) for every ` ∈ L′, where
πt1(V ) is defined as in [13]. Consider the homomorphism

ρ : πt1(V )→
∏
`∈L′

(G(ρ`∞)/DG(ρ`∞))(Q`)

induced by the ρ`∞ . Because ρ has an abelian image, it factors through the

abelianization πt,ab
1 (V ) of πt1(V ). Let F′ be the largest algebraic extension

of Fp in Kind. Then F′/Fp is finite, V/F′ is geometrically connected and

by [13, Thm. 7.5] the kernel Ker(πt,ab
1 (V ) → Gal(F′)) is finite, and thus

ρ(Gal(FpKind)) is finite. Therefore we can replace Kind by a finite Galois

extension of K, so that ρ(Gal(FpKind)) = {e}. By Corollary 1.3, this

implies the containment ρ`∞(Gal(FpKind)) ⊂ DG(ρ`∞) asserted in (d) for
every ` ∈ L′. The openness claimed in (d) follows from [19, Prop. 2 and its
Cor.].

Concerning (e), let Sind be the connected finite étale cover of S cor-
responding to the image of Gal(Kind) of π1(S). Then (a)–(e) hold if we
replace Kind by k(Sind). �
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2. The sets of Galois generic points

In addition to the data introduced above let k be an infinite finitely
generated field and S/k a smooth geometrically connected variety with
function field K. Assume that X extends to a smooth proper scheme X
over S. Then ρ`∞ factors through π1(S). As recalled in the introduction,
for every s ∈ |S| the representation ρ`∞,s is isomorphic to the representation
of Gal(k(s)) on Hj(X

s,k(s)
,Q`) where Xs = X ×S Spec(k(s)) is the special

fibre of X in s. For our applications below, note that the results of Section 1
also apply to ((ρ`∞,s)`∈L′ , k(s)) instead of ((ρ`∞)`∈L′ ,K).

In this section we group together various results about the sets Sgen(ρ`∞)
and some consequences. The following result is due to Serre (cf. [21, § 10.6]).
We outline the argument.

Lemma 2.1. For any ` ∈ L′ the set Sgen(ρ`∞) is Zariski-dense in S.

Proof. Let ` be in L′ and let Φ` be the Frattini subgroup of G :=
ρ`∞(π1(S)), i.e., the intersection of all maximal closed subgroups of G.
Clearly G is a compact subgroup of GLV`(Q`), and so by [10, Thm. 8.33.,
p. 201] there is an open pro-` subgroup of G of finite rank. We deduce
from [21, § 10.6 Prop.] that Φ` is open in G.

Consider now the composite homomorphism:

ρ` : Gal(K)
ρ`∞−→ G→ G/Φ`.

Both ρ`∞ and ρ` factor via π1(S), and by the universal property of the
Frattini group, we have
(2.1)
{s ∈ |S| : ρ`∞,s(Gal(k(s))) = G} = {s ∈ |S| : ρ`,s(Gal(k(s))) = G/Φ`}.

Let M denote the right hand set. Because G/Φ` is finite and k is Hilbertian,
the setM is Zariski dense in S. This completes the proof, because Sgen(ρ`∞)
contains the left hand side of (2.1). �

For the rest of this paper we define, for s ∈ |S| and ` ∈ L′, the semisimple
groups

D`∞ := G(ρ`∞ |Gal(FpK)) and D`∞,s := G(ρ`∞,s|Gal(Fpk(s)))

over Q` and recall from Corollary 1.3 that D`∞ = DG(ρ`∞) and D`∞,s =
DG(ρ`∞,s).

Because of Theorem 1.1, the following result follows from [15, Thm. 2.4].

Theorem 2.2 (Larsen and Pink). If trdegFp
K = 1, then the functions

` 7→ dimD`∞ and ` 7→ dimD`∞,s on L′ are both constant.

As an application of Lemma 2.1 we extend Theorem 2.2 to all fields K
considered here.
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Corollary 2.3. The functions ` 7→ dimD`∞ and ` 7→ dimD`∞,s on L′ are
both constant.

Proof. Note that it suffices to prove the assertion on ` 7→ dimD`∞ , since
for the second assertion one may take k(s) for K and ρ`∞,s for ρ`∞ . Let
now K be a finitely generated field over Fp. We choose a subfield κ ⊂ K
such that trdegFp

κ = 1 and K/κ is a regular extension of fields. Next we

choose a geometrically connected smooth κ-variety B with κ(B) = K and
a smooth proper morphism XB → B with generic fibre X/K. Let `0 ∈ L′
be such that dim(D`∞0

) = max` dim(D`∞). By Lemma 2.1 there exists a

point b ∈ Bgen(ρ`∞0 ); note that trdegFp
κ(b) = 1. Then for any ` ∈ L′ we

have

dim(D`∞) ≥ dim(DG(ρ`∞,b))
Thm. 2.2

= dim(DG(ρ`∞0 ,b))
choice of b

= dim(D`∞0
),

and it follows from the choice of `0 that ` 7→ dimD`∞ is constant. �

Remark 2.4. In the above proof, for the reduction from K to transcendence
degree 1, one could also use results on “space filling curves”, as for instance
[11, Rem. 2.18(ii)], cf. [7, Ex. 3.1].

We also need an analog of [6, 3.2.3] for Sgen, as defined here.

Lemma 2.5. (a) For s̄ ∈ |SFpk
| denote by s̄S the closed point of S under

s̄. Then

Sgen(ρ`∞) = {s̄S | s̄ ∈ Sgen

Fpk
(ρ`∞ |π1(SFpk

))}.

(b) If S′ is a finite étale cover of S and for s′ ∈ |S′| denote by s′S the
closed point of S under s′. Then

Sgen(ρ`∞) = {s′S | s′ ∈ (S′)gen(ρ`∞ |π1(S′))}.
Proof. We only prove (a), the proof of (b) being elementary. There is a
bijection between points in |S| and orbits under Gal(Fpk/k) in |SFpk

|. So

let s be in |S| and denote by s̄ a point in |SFpk
| above it. Consider the

commutative diagram

D`∞,s
� � //

� _

��

G(ρ`∞,s)� _

��
D`∞

� � // G(ρ`∞).

If s is Galois generic, then the right vertical inclusion is an isomorphism.
Hence by Corollary 1.3 the same holds for the left inclusion, and this means
that s̄ is Galois generic. Conversely, let s̄ be Galois generic, so that the left
vertical inclusion is an isomorphism, and we have an induced monomor-
phism

ιs : G(ρ`∞,s)/D`∞,s ↪→ G(ρ`∞)/D`∞



8 Gebhard Böckle, Wojciech Gajda, Sebastian Petersen

of commutative algebraic groups (see the proof of Theorem 1.4). Now the
image of some open subgroup of Gal(Fpk/k) is Zariski dense inG(ρ`∞)/D`∞ ,
and moreover there exists a finite extension k′/k(s) such that the image of
Gal(Fpk′/k′) is Zariski dense inG(ρ`∞,s)/D`∞,s. But clearly Gal(Fpk′/k′) ↪→
Gal(Fpk/k) is of finite index, and thus the map ιs is an isomorphism, and
it follows that s is Galois generic. �

Remark 2.6. Let ` be in L′ and denote by ρss
`∞ the semisimplification of

ρ`∞ . Then from Lemma 2.5, Theorem 1.2 and Theorem 1.4 it is immediate
that Sgen(ρss

`∞) = Sgen(ρ`∞).

Proposition 2.7. For any two primes `1, `2 ∈ L′ we have Sgen(ρ`∞1 ) =
Sgen(ρ`∞2 ).

Proof. By Lemma 2.5 it suffices to show

(2.2) Sgen

Fpk
(ρ`∞1 |Gal(FpK)) = Sgen

Fpk
(ρ`∞2 |Gal(FpK)).

For this let s̄ be in |SFpk
|. Observe that for any ` ∈ L′ we have the obvious

assertion (a`) that D`∞,s ↪→ D`∞ is an inclusion of connected semisim-
ple groups and from Corollary 2.3 the assertion (b) that both functions
` 7→ dim(D`∞) and ` 7→ dim(D`∞,s) on L′ are constant. ¿From these one
deduces the following chain of equivalences

s̄ ∈ Sgen

Fpk
(ρ`∞1 |Gal(FpK))

(a`1 )
⇐⇒ dimD`∞1 ,s = dimD`∞1

(b)⇐⇒ dimD`∞2 ,s = dimD`∞2

(a`2 )
⇐⇒ s̄ ∈ Sgen

Fpk
(ρ`∞2 |Gal(FpK)).

�

We define Sgen(X /S) = Sgen(ρ`∞) for any ` ∈ L′, and we call Sgen(X /S)
the set of Galois generic points of X /S.

3. Adelic openness

Lemma 3.1. If Theorem 1(c) holds over Kind (see Theorem 1.4), then it
holds over K.

Proof. Let Sind be the cover of S given in Theorem 1.4(e). Let s be in
|S| and let s′ ∈ |Sind| be above s. Then by Lemma 2.5(b), we have s ∈
Sgen(ρ`∞) if and only if s′ ∈ Sgen(ρ`∞ |π1(Sind)). Proposition 2.7 therefore
implies that s ∈ Sgen(X /S) if and only if s′ ∈ Sgen(X ×S Sind/Sind). Now
suppose that Theorem 1(c) holds over Kind. Then ρs′(Gal(k(s′))) is open in
ρ(π1(Sind)) for every s′ ∈ Sgen(X ×SSind/Sind), and since ρs′(Gal(k(s′))) ⊂
ρs(Gal(k(s))) and ρ(π1(Sind)) ⊂ ρ(π1(S)) are open, the lemma is proved.

�
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For the remainder of this section, we shall assume K = Kind, cf. Theo-
rem 1.4.

Lemma 3.2. Let s be in Sgen(X /S). Then for all ` ∈ L′ the group
ρ`∞,s(Gal(Fpk(s))) is open in ρ`∞(Gal(FpK)).

Proof. Because K = Kind, the group ρ`∞(Gal(FpK)) lies in D`∞(Q`), and

hence so does ρ`∞,s(Gal(Fpk(s))) ⊂ ρ`∞(Gal(FpK)). By our choice of s

we have D`∞ = D`∞,s, and thus by Theorem 1.4(d), both ρ`∞(Gal(FpK))

and ρ`∞,s(Gal(Fpk(s))) are open in D`∞(Q`). This implies the asserted
openness and completes the proof. �

Note that ρ`∞ has its image in GLT`(X)(Z`). Let D`∞/Z` be the Zariski
closure of D`∞ in GLT`(X). The following result is powered by two theorems

from a recent paper of Cadoret, Hui and Tamagawa (cf. [5]).

Theorem 3.3. (a) For all `� 0 the group scheme D`∞/Z` is semisim-
ple.

(b) For every s ∈ Sgen(X /S) we have the equalities

ρ`∞,s(Gal(Fpk(s)))+ = ρ`∞(Gal(FpK)) = D`∞(Z`)+

for all `� 0 (depending on s).

Proof. Part (a) is immediate from [5, Thm. 1.2] and [5, Cor. 7.5]. For
part (b), let s ∈ Sgen(X /S), so that D`∞,s = D`∞ . Then D`∞ is also

the Zariski closure of ρ`∞,s(Gal(Fpk(s)) in GLT`(X). We now apply [5, 7.3]
twice in order to get

D`∞(Z`)+ = ρ`∞(Gal(FpK))+ = ρ`∞(Gal(FpK)) and
D`∞(Z`)+ = ρ`∞(Gal(Fpk(s)))+.

�

Corollary 3.4. Consider the adelic representation

ρ : Gal(K)→
∏
`∈L′

GLT`(A)(Z`).

For every s ∈ Sgen(X /S) the group ρs(Gal(Fpk(s))) is an open subgroup

of ρ(Gal(FpK)).

Proof. Let G = Gal(FpK) and Gs = Gal(Fpk(s)). Then

ρ(G) =
∏
`∈L′

ρ`∞(G)

by Theorem 1.4 (c) because K = Kind. Furthermore, again by Theorem 1.4
(c), there exists an open normal subgroup Hs = Gal(Fpk(s)ind) of Gs such
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that

ρs(Hs) =
∏
`∈L′

ρ`∞,s(Hs).

For every prime number ` ∈ L′ the group ρ`∞,s(Hs) is open in ρ`∞,s(Gs)
(because Hs is open in Gs), and ρ`∞,s(Gs) is open in ρ`∞(G) by Lemma 3.2.
It follows that ρ`∞,s(Hs) is open in ρ`∞(G) for all ` ∈ L′.

By Theorem 3.3 we have ρ`∞,s(Gs)
+ = ρ`∞(G) for all `� 0 in L′ because

K = Kind. From our construction of Hs via Theorem 1.4, we deduce
ρ`∞,s(Hs) = ρ`∞,s(Gs)

+ for all `� 0 in L′, and hence ρ`∞,s(Hs) = ρ`∞(G)
for these `. By the definition of the product topology, the group ρs(Hs) is
open in ρ(G). As ρs(Hs) ⊂ ρs(Gs) ⊂ ρ(G), the assertion follows. �

Theorem 3.5. For s ∈ Sgen(X /S) the group ρs(Gal(k(s))) is open in
ρ(Gal(K)).

Proof. Let s̄ ∈ |SFpk
| be above s ∈ Sgen(X /S), and consider the following

commutative diagram with exact rows, where ρ is induced from ρ:

1 // ρ(π1(SFpk
)) // ρ(π1(S)) // ρ(π1(S))/ρ(π1(SFpk

)) // 1

1 // π1(SFpk
) //

ρ

OO

π1(S) //

ρ

OO

Gal(Fpk/k)

ρ

OO

// 1

1 // Gal(Fpk(s)) //

s̄∗

OO

Gal(k(s)) //

s∗

OO

Gal(Fpk(s)/k(s))

i

OO

// 1

Now ρs(Gal(Fpk(s))) is open in ρ(π1(SFpk
)) by Corollary 3.4. Furthermore

ρ(Gal(Fpk(s)/k(s))) is open in ρ(π1(S))/ρ(π1(SFpk
)), because k(s)/k is fi-

nite and ρ is surjective. It follows that ρs(Gal(k(s))) is open in ρ(Gal(K)).
�

4. Largeness in the sense of Hui-Larsen

Throughout this section we assume K = Kind and fix a Galois generic
point s ∈ Sgen(X /S). Consider the restricted direct product

DA :=
∏′

`∈L′
D`∞(Q`)

with respect to the compact open subgroups D`∞(Z`) ⊂ D`∞(Q`) for `� 0
from Theorem 3.3, so that

Γs := ρs(Gal(Fpk(s))) ⊂ Γ := ρ(Gal(FpK)) ⊂ DA.

It is tempting to expect that Γs is open in DA. But by Theorem 3.3,
this adelic openness statement can only hold if almost all D`∞ are simply
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connected since only then D`∞(Z`)+ = D`∞(Z`). In [12], Hui and Larsen
suggest a reformulation that allows one to state a meaningful adelic open-
ness conjecture, [12, Conj. 1.3], which they formulate in the case that K is
a number field. Below we prove the analogue of their conjecture for com-
patible systems arising in the cohomology of a smooth projective variety
over a finite type base in positive characteristic.

Let p`∞ : Dsc
`∞ → D`∞ (and D sc

`∞ → D`∞ , resp.) be the simply connected
cover of the semisimple Q`-group D`∞ (and the Z`-group D`∞ , resp.).
Since p`∞ is a central isogeny, the commutator morphism Dsc

`∞ × Dsc
`∞ →

Dsc
`∞ , (x, y) 7→ xyx−1y−1 factors through a morphism κ`∞ : D`∞ ×D`∞ →

Dsc
`∞ . Furthermore let

Dsc
A :=

∏′

`∈L′
Dsc
`∞(Q`)

be the restricted direct product with respect to the D sc
`∞(Z`) for `� 0, and

let
κ : DA ×DA → Dsc

A
be the map derived from the κ`∞ . Because the groups D sc

`∞(Z`) for `� 0 are
hyperspecial maximal compact, as they are the Z`-points of a semisimple
group scheme over Z`, the compact open subgroups of Dsc

A are precisely
the special adelic groups as defined in [12, Section 2]. For a subset M of a
group H and u ∈ N we define the set Mu := {s1 · . . . · su | s1, . . . , su ∈M}.

Theorem 4.1 (Analog of [12, Conj. 1.3]). Let M be in {κ(Γs,Γs), κ(Γ,Γ)}.
Then the set M generates a compact open subgroup of Dsc

A which is equal
to Mu for some u ∈ N. Moreover M2 contains a compact open subgroup of
Dsc

A .

Proof. Denote by pr`∞ : DA → D`∞ the projection on the `-th factor of
the product. Note that pr`∞(Γs) = ρ`∞,s(Gal(Fpk(s))) is Zariski dense in
D`∞ for each ` ∈ L′ because s is Galois generic. By [1, Thm. 1.2] there
exists a finite extension F/Fpk(s) such that

ρs(Gal(F )) =
∏
`∈L′

ρ`∞,s(Gal(F )).

Thus, if we define Γ`∞,s := ρ`∞,s(Gal(F )), then
∏
`∈L′ Γ`∞,s ⊂ Γs ⊂ Γ.

For each ` ∈ L′ the group Γ`∞,s is open in D`∞(Q`) by Lemma 3.2 and
Theorem 1.4(d). Moreover, as D`∞ is semisimple and Γ`∞,s = D`∞(Z`)+

for `� 0 (cf. Theorem 3.3), by [5, Cor. 8.2] we have pr−1
`∞(Γ`∞,s) = D sc

`∞(Z`)
for `� 0. �
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[1] Gebhard Böckle, Wojciech Gajda and Sebastian Petersen, Independence of `-adic

representations of geometric Galois groups. J. Reine Angew. Math., DOI: 10.1515/crelle-
2015-0024 (2015).
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Wilhelmshöher Allee 73

34121 Kassel, Germany
E-mail : petersen@mathematik.uni-kassel.de


	Introduction
	Notation
	1. Preliminaries
	2. The sets of Galois generic points
	3. Adelic openness
	4. Largeness in the sense of Hui-Larsen
	References

