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In this paper we prove the Geyer-Jarden conjecture on the torsion part of the Mordell-Weil group for a large
class of abelian varieties defined over finitely generated fields of arbitrary characteristic. The class consists of
all abelian varieties with big monodromy, i.e., such that the image of Galois representation on �-torsion points,
for almost all primes �, contains the full symplectic group.
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1 Introduction

Let A be a polarized abelian variety defined over a finitely generated field K. Denote by ˜K (respectively, Ksep)
the algebraic (resp., separable) closure of K. It is well known that the Mordell-Weil group A(K) is a finitely
generated Z-module. On the other hand A

(

˜K
)

is a divisible group with an infinite torsion part A
(

˜K
)

tor and

A
(

˜K
)

has infinite rank, unless K is algebraic over a finite field. Hence, it is of fundamental interest to study the

structure of the groups A(Ω) for infinite algebraic extensions Ω/K smaller than ˜K. For example, Ribet in [18] and
Zarhin in [24] considered the question of finiteness of A(Kab)tor , where Kab is the maximal abelian extension
of K.

We denote by GK := G(Ksep/K) the absolute Galois group of K. For a positive integer e and for σ =
(σ1 , σ2 , . . . , σe) in the group Ge

K = GK×GK× · · ·×GK , we denote by Ksep(σ) the subfield in Ksep fixed by
σ1 , σ2 , . . . , σe . There exists a substantial literature on arithmetic properties of the fields Ksep(σ). In particular,
the Mordell-Weil groups A(Ksep(σ)) have been already studied, e.g., Larsen formulated a conjecture in [15] on
the rank of A(Ksep(σ)) (cf. [12], [7] for results supporting the conjecture of Larsen).

In this paper we consider the torsion part of the groups A(Ksep(σ)). In order to recall the conjecture which is
mentioned in the title, we agree to say that a property A(σ) holds for almost all σ ∈ Ge

K , if A(σ) holds for all
σ ∈ Ge

K , except for a set of measure zero with respect to the (unique) normalized Haar measure on the compact
group Ge

K . In [5] Geyer and Jarden proposed the following conjecture on the torsion part of A(Ksep(σ)).
Conjecture of Geyer and Jarden Let K be a finitely generated field. Let A be an abelian variety defined

over K.

(a) For almost all σ ∈ GK there are infinitely many prime numbers � such that the group A(Ksep(σ))[�] of
�-division points is nonzero.

(b) Let e ≥ 2. For almost all σ ∈ Ge
K there are only finitely many prime numbers � such that the group

A(Ksep(σ))[�] of �-division points is nonzero.
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2 S. Arias-de-Reyna, W. Gajda, and S. Petersen: The conjecture of Geyer and Jarden on torsion

It is known due to the work of Jacobson and Jarden [13] that for all e ≥ 1, almost all σ ∈ Ge
K and all primes

� the group A(Ksep(σ))[�∞] is finite. This was formerly part (c) of the conjecture. Moreover the conjecture is
known for elliptic curves [5]. Part (b) holds true provided char(K) = 0 (see [13]). In a very recent preprint
Zywina proves part (a) in the special case where K is a number field (cf. [25]), stengthening results of Geyer and
Jarden [6].

As for today, for an abelian variety A of dimension ≥ 2 defined over a finitely generated field of positive
characteristic, parts (a) and (b) of the Conjecture of Geyer and Jarden are open and part (a) is open over a finitely
generated transcendental extension of Q.

In this paper we prove the Conjecture of Geyer and Jarden for abelian varieties with big monodromy. To for-
mulate our main result we need some notation. Let � �= char(K) be a prime number. We denote by ρA [�] : GK →
Aut(A[�]) the Galois representation attached to the action of GK on the �-torsion points of A. We define
MK (A[�]) := ρA [�](GK ) and call this group the mod-� monodromy group of A/K. We fix a polarization and
denote by e� : A[�] × A[�] → μ� the corresponding Weil pairing. Then MK (A[�]) is a subgroup of the group
of symplectic similitudes GSp(A[�], e�) of the Weil pairing. We will say that A/K has big monodromy if there
exists a constant �0 such that MK (A[�]) contains the symplectic group Sp(A[�], e�), for every prime number
� ≥ �0 . Note that the property of having big monodromy does not depend on the choice of the polarization, cf.
Proposition 3.6 below.

The main result of our paper is the following

Main Theorem [Cf. Thm. 4.1, Thm. 7.1.] Let K be a finitely generated field and A/K an abelian variety
with big monodromy. Then the Conjecture of Geyer and Jarden holds true for A/K.

Surprisingly enough, the most difficult case to prove is Part (a) of the Conjecture for abelian varieties with big
monodromy, when char(K) > 0. The method of our proof relies in this case on the Borel-Cantelli Lemma of
measure theory and on a delicate counting argument in the group Sp2g (F�) which was modeled after a construc-
tion of subsets S′(�) in SL2(F�) in Section 3 of the classical paper [5] of Geyer and Jarden.

It is interesting to combine the main theorem with existing computations of monodromy groups for certain
families of abelian varieties. We offer a result of this type in Corollary 7.2 below, thereby providing the reader
with many examples of abelian varieties for which the conjecture of Geyer and Jarden is true.

2 Notation and background material

In this section we fix notation and gather some background material on Galois representations that is important
for the rest of this paper.

If K is a field, then we denote by Ksep
(

resp. ˜K
)

the separable (resp. algebraic) closure of K and by GK =
G(Ksep/K) its absolute Galois group. If G is a profinite (hence compact) group, then it has a unique normalized
Haar measure μG . The expression “assertion A(σ) holds for almost all σ ∈ G” means “assertion A(σ) holds true
for all σ outside a zero set with respect to μG ”. A finitely generated field is by definition a field which is finitely
generated over its prime field. Let X be a scheme of finite type over a field K. For a geometric point P ∈ X

(

K̃
)

we denote by K(P ) ⊂ K̃ the residue field at P .
For n ∈ N coprime to char(K), we let A[n] be the group of n-torsion points in A

(

K̃
)

and define A[n∞] =
⋃∞

i=1 A[ni ]. For a prime � �= char(K) we denote by T�(A) = lim←−
i∈N

A[�i ] the �-adic Tate module of A. Then A[n],

A[n∞] and T�(A) are GK -modules in a natural way.
If M is a GK -module (for example M = μn or M = A[n] where A/K is an abelian variety), then we shall

denote the corresponding representation of the Galois group GK by

ρM : GK −→ Aut(M)

and define MK (M) := ρM (GK ). We define K(M) := K
ker(ρM )
sep to be the fixed field in Ksep of the kernel of

ρM . Then K(M)/K is a Galois extension and G(K(M)/K) ∼= MK (M). For every algebraic extension L/K
we define ML (M) := ρM (GL ).

Let R be a commutative ring with 1 (usually R = F� or R = Z� or R = Z/nZ) and M a finitely generated
free R-module equipped with an alternating bilinear pairing e : M ×M → R′ into a free R-module R′ of rank 1

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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(which is a multiplicatively written R-module in our setting below). We call such a pairing perfect provided the
associated map

M −→ Hom(M,R′), x 	−→ (y 	→ e(x, y))

is bijective. We denote by

Sp(M, e) = {f ∈ AutR (M) | ∀x, y ∈ M : e(f(x), f(y)) = e(x, y)}

the corresponding symplectic group and by

GSp(M, e) = {f ∈ AutR (M) | ∃ε ∈ R× : ∀x, y ∈ M : e(f(x), f(y)) = εe(x, y)}

the corresponding group of symplectic similitudes. Assume now that e is perfect. For f ∈ GSp(M, e) there is
then even a unique value ε(f) ∈ R× such that e(f(x), f(y)) = ε(f)e(x, y) for all x, y ∈ M and we call ε(f)
the multiplicator of f . The map

GSp(M, e) −→ R×, f 	−→ ε(f)

is a homomorphism (cf. [2, Chap. 9, Paragraph 6, no. 5, p. 99 ]) which is called the multiplicator map.
Let n be an integer coprime to char(K) and � be a prime different from char(K). We define the GK -module

Z�(1) by

Z�(1) = lim←−
j∈N

μ�j .

Let A/K be an abelian variety. We denote by A∨ the dual abelian variety and let en : A[n] × A∨[n] → μn

and e�∞ : T�A × T�A
∨ → Z�(1) be the corresponding Weil pairings (cf. [17, Chap. 16]). Choose a polarization

λ : A → A∨. (This is possible, cf. [3, Example 2.2, p. 8].) Consider the Weil pairings eλ
n : A[n] × A[n] → μn

and eλ
�∞ : T�A × T�A → Z�(1) defined by eλ

n = en ◦ (Id × λ) and by eλ
�∞ = e�∞ ◦ (Id × T�(λ)). If � does not

divide deg(λ) and if n is coprime to deg(λ), then eλ
n and eλ

�∞ are perfect, alternating, GK -equivariant pairings
(cf. [17, Chap. 16]). Hence we have representations

ρA [n ] : GK −→ GSp
(

A[n], eλ
n

)

,

ρT� A : GK −→ GSp
(

T�A, eλ
�∞
)

,

and ML (A[n]) = ρA [n ](GL ) ⊂ GSp
(

A[n]), eλ
n

)

and ML (T�A) = ρT� A (GL ) ⊂ GSp
(

T�A, eλ
�∞
)

for ev-
ery algebraic extension L/K. The representations induce isomorphisms G(L(A[n])/L) ∼= ML (A[n]) and
G(L(A[�∞]/L) ∼= ML (T�A). Note that ML (T�A) → ML (A[�i ]) is surjective (because G(L(A[�∞])/L) →
G(L(A[�i ])/L) is surjective) for every integer i.

We shall say that an abelian variety (A, λ) over a field K has big monodromy, if there is a constant �0 >
max(char(K),deg(λ)) such that MK (A[�]) ⊃ Sp

(

A[�], eλ
�

)

for every prime number � ≥ �0 . We will prove in
Proposition 3.6 that the property of having big monodromy is independent of the choice of the polarization.

3 Properties of abelian varieties with big monodromy

Let (A, λ) be a polarized abelian variety with big monodromy over a finitely generated field K. Then it holds that
Sp
(

A[�], eλ
�

)

⊂ MK (A[�]) for sufficiently large primes �. In this section we determine MK (A[n]) completely
for every “sufficiently large” integer n. The main result (cf. Proposition 3.4 below) is due to Serre in the number
field case, and the general case requires only a slight adaption of Serre’s line of reasoning. However, as the final
outcome is somewhat different in positive characteristic, we do include the details. Proposition 3.4 will be crucial
for our results on the Conjecture of Geyer and Jarden.

Remark 3.1 Let K be a field and (A, λ) a polarized abelian variety over K. Let n be an integer coprime to
deg(λ).

www.mn-journal.com c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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(a) If L/K is a Galois extension, then ML (A[n]) is a normal subgroup of MK (A[n]) and the quotient group
MK (A[n])/ML (A[n]) is isomorphic to G(K(A[n]) ∩ L/K).

(b) Define Kn := K(A[n]) and denote by ρA [n ] : G(Kn/K)→GSp
(

A[n], eλ
n

)

(resp. ρμ [n ] : G(K(μn )/K)→
(Z/nZ)×)) the monomorphism induced by ρA [n ] (resp. by the cyclotomic character ρμn

). Recall that
ε : GSp

(

A[n], eλ
n

)

→ (Z/nZ)× is the multiplicator map.
Then K(μn ) ⊂ Kn , MK (μn )(A[n]) ⊂ Sp

(

A[n], eλ
n

)

and there is a commutative diagram

1 �� G(Kn/K(μn )) ��

��

G(Kn/K) ��

ρA [n ]

��

G(K(μn )/K) ��

ρμ n

��

1

1 �� Sp
(

A[n], eλ
n

)

�� GSp
(

A[n], eλ
n

) ε �� (Z/nZ)× �� 1

with exact rows and injective vertical maps.

(c) If Sp
(

A[n], eλ
n

)

⊂ im
(

ρA [n ]
)

, then the left-hand vertical map is an isomorphism and MK (μn )(A[n]) =
Sp
(

A[n], eλ
n

)

.

P r o o f. Part (a). If L/K is Galois, then GL is normal in GK , and hence ML (A[n]) = ρA [n ](GL ) is normal in
MK (A[n]) = ρA [n ](GK ). The second isomorphism theorem implies that MK (A[n])/ML (A[n]) is isomorphic
to the group GK / ker

(

ρA [n ]
)

· GL = Gal(K(A[n]) ∩ L/K).
Part (b). Denote by ζ ∈ μn a primitive n-th root of unity. Then there exist P,Q ∈ A[n] such that eλ

n (P,Q) = ζ,
because eλ

n is a perfect pairing. For all σ ∈ GKn
we have

σ(ζ) = σ
(

eλ
n (P,Q)

)

= eλ
n

(

ρA [n ](σ)(P ), ρA [n ](σ)(Q)
)

= eλ
n (P,Q) = ζ

by the GK -equivariance of the Weil pairing. It follows that GKn
⊂ GK (μn ) and K(μn ) ⊂ Kn = K(A[n]). We

have thus established the upper exact sequence. Furthermore, again by the GK -equivariance of the Weil pairing,
we have

eλ
n (ρA [n ](σ)(P ), ρA [n ](σ)(Q)) = σ

(

eλ
n (P,Q)

)

= eλ
n (P,Q)ρμ n (σ )

for all P,Q ∈ A[n] and all σ ∈ GK . This implies that the right rectangle in the diagram is commutative
and that MK (μn )(A[n]) ⊂ Sp

(

A[n], eλ
n

)

. We define the right vertical arrow to be the restriction of ρA [n ] to
G(Kn/K(μn )) to the kernel of the upper sequence. Then the left rectangle in the diagram is commutative by
construction. Finally the injectivity of the middle arrow implies that the left vertical arrow is injective.

Part (c). Assume that Sp
(

A[n], eλ
n

)

⊂ im
(

ρA [n ]
)

and let f ∈ Sp
(

A[n], eλ
n

)

. Then there exists σ ∈ G(Kn/K)
such that ρA [n ](σ) = f . Then ρμn

(σ|K(μn )) = ε(f) = 1, hence σ|K(μn ) = Id, because ρμn
is injective. Thus

σ ∈ GK (μn ) and the assertion follows from that.

Proposition 3.2 Let K be a field and (A, λ) a polarized abelian variety over K with big monodromy. Let
L/K be an abelian Galois extension with L ⊃ μ∞. Then there is a constant �0 > max(char(K),deg(λ)) with
the following properties.

(a) ML (T�A) = Sp
(

T�A, eλ
�∞
)

for all primes � ≥ �0 .

(b) Let c be the product of all prime numbers ≤ �0 . Then ML (A[n]) = Sp
(

A[n], eλ
n

)

for every integer n
which is coprime to c.

P r o o f. Part (a). There is a constant �0 > max(char(K),deg(λ), 5) such that MK (A[�]) ⊃ Sp
(

A[�], eλ
�

)

for
all primes � ≥ �0 , because A has big monodromy. Let � ≥ �0 be a prime. Then

Gal(K(A[�])/K(μ�)) ∼= MK (μ� )(A[�]) = Sp
(

A[�], eλ
�

)

by Remark 3.1, part (c).
The group Sp

(

A[�], eλ
�

)

is perfect, because � ≥ 5 (cf. [22, Thm. 8.7]). As L/K(μ�) is an abelian Ga-
lois extension, ML (A[�]) is a normal subgroup of the perfect group MK (μ� )(A[�]) and the quotient group

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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MK (μ� )(A[�])/ML (A[�]) is isomorphic to a subquotient of G(L/K) (cf. Remark 3.1, part a), hence abelian.
This implies that

ML (A[�]) = MK (μ� )(A[�]) = Sp
(

A[�], eλ
�

)

.

Denote by p : Sp
(

T�A, eλ
�∞
)

→ Sp
(

A[�], eλ
�

)

the canonical projection. Then ML (T�A) is a closed subgroup of
Sp
(

T�A, eλ
�∞
)

with

p(ML (T�A)) = ML (A[�]) = Sp
(

A[�], eλ
�

)

.

Hence ML (T�A) = Sp
(

T�A, eλ
�∞
)

(cf. [14, Prop. 2.6], [23, Thm. B]).
Part (b). Consider the map

ρ : GL →
∏

�≥�0

ML (T�A) =
∏

�≥�0

Sp
(

T�A, eλ
�∞
)

induced by the representations ρT� A and denote by X := ρ(GL ) its image. Then X is a closed subgroup of
∏

�≥�0
Sp
(

T�A, eλ
�∞
)

. If pr� denotes the �-th projection of the product, then pr�(X) = Sp
(

T�A, eλ
�∞
)

. Hence [21,
Section 7, Lemme 2] implies that X =

∏

�≥�0
Sp
(

T�A, eλ
�∞
)

, i.e. that ρ is surjective.
Let c be the product of all prime numbers ≤ �0 . Let n be an integer coprime to c. Then n =

∏

�|n prime �v� for
certain integers v� ≥ 1. The canonical map r : ML (A[n]) →

∏

�|n prime ML (A[�v� ]) is injective. Consider the
diagram

GL

��

ρ′
��
∏

�|n ML (T�A)

��

∏

�|n Sp
(

T�A, eλ
�∞
)

��
ML (A[n]) � � r �

∏

�|n ML (A[�v� ]) � � �
∏

�|n Sp
(

A[�v� ], eλ
�v �

)

.

The vertical maps are surjective. The horizontal map ρ′ is surjective as well, because ρ is surjective. This
implies, that the lower horizontal map

ML (A[n]) →
∏

�|n
Sp
(

A[�v� ], eλ
�v �

)

is in fact bijective. It follows from the Chinese Remainder Theorem that the canonical map

∏

�|n
Sp
(

A[�v� ], eλ
�v �

)

→ Sp
(

A[n], eλ
n

)

is bijective as well. Assertion (b) follows from that.

Corollary 3.3 Let K be a field and (A, λ) a polarized abelian variety over K with big monodromy. Then
there is a constant c coprime to deg(λ) and to char(K), if char(K) is positive, with the following property:
MK (A[n]) ⊃ Sp

(

A[n], eλ
n

)

for every integer n coprime to c.

P r o o f. Let L = Kab be the maximal abelian extension. Then there is a constant c as above, such that
ML (A[n]) = Sp

(

A[n], eλ
n

)

for every n coprime to c by Proposition 3.2. Furthermore ML (A[n]) ⊂ MK (A[n])
by Remark 3.1, part (a).

Let K be a field and (A, λ) a polarized abelian variety over K with big monodromy. There is a constant c
(divisible by deg(λ) and by char(K), if char(K) �= 0) such that

Sp
(

A[n], eλ
n

)

⊂ MK (A[n]) ⊂ GSp
(

A[n], eλ
n

)

www.mn-journal.com c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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for all n ∈ N coprime to c (cf. Corollary 3.3). From the diagram in Remark 3.1 one sees that

MK (A[n]) =
{

f ∈ GSp
(

A[n], eλ
n

)

| ε(f) ∈ im(ρμn
)
}

.

for all n ∈ N coprime to c. If K is finitely generated, then one can determine im(ρμn
) and MK (A[n]) completely.

Assume from now on that K is finitely generated. Then the image of the cyclotomic character involved above
has a well-known explicit description. Denote by F the algebraic closure of the prime field of K in K and define
q := q(K) := |F | ∈ N ∪ {∞}. Then, after possibly replacing c by a larger constant, we have

im(ρμn
) =

{

〈q〉, char(K) �= 0,

(Z/nZ)×, char(K) = 0,

for all n ∈ N coprime to c (cf. [16, Thm. 2.47(ii)]). Here 〈q〉 is the subgroup of (Z/nZ)× generated by the residue
class q of q modulo n, provided q is finite. If q is finite, then we define

GSp(q)(A[n], eλ
n

)

=
{

f ∈ GSp
(

A[n], eλ
n

)

| ε(f) ∈ 〈q〉
}

.

Finally we put GSp(∞)(A[n], eλ
n

)

= GSp
(

A[n], eλ
n

)

. We have shown:

Proposition 3.4 Let K be a finitely generated field and (A, λ) a polarized abelian variety over K with big
monodromy. Let q = q(K). Then there is a constant c (divisible by deg(λ) and by char(K), if char(K) �= 0)
such that MK (A[n]) = GSp(q)(A[n], eλ

n

)

for all n ∈ N coprime to c.

We shall now prove that the notion of big monodromy does not depend on the choice of the polarization. For
this we need the following lemma.

Lemma 3.5 Let T be a finitely generated free Z�-module and e : T × T → Z� a perfect alternating bilinear
pairing. Then

{f ∈ EndZ�
(T ) | f ◦ g = g ◦ f ∀g ∈ Sp(T, e)} = Z�IdT .

P r o o f. Let f ∈ EndZ�
(T ) and assume that f ◦ g = g ◦ f for all g ∈ Sp(T, e). Note that for every u ∈ T the

automorphism Tu : v 	→ v+e(v, u)u lies in Sp(T, e) (cf. [8, Chap. 3, p. 23]). Then f◦Tu (v) = f(v)+e(v, u)f(u)
and Tu ◦ f(v) = f(v) + e(f(v), u)u. It follows that

e(v, u)f(u) = e(f(v), u)u for all u, v ∈ T .

Now choose an arbitrary Z�-basis (u1 , . . . , un ) of T . For every index i there is a vector vi such that e(vi, ui) = 1
and e(vi, uj ) = 0 for all i �= j, because the pairing e is perfect. It follows that f(ui) = e(f(vi), ui)ui for all i.
We put λi := e(f(vi), ui) such that f(ui) = λiui .

For i �= 1 we have e(v1 , u1 + uj ) = 1, hence f
(

u1 + uj

)

= e
(

f(v1), u1 + uj

)(

u1 + uj

)

. We put λ1,j =
e
(

f(v1), u1 + uj

)

such that f
(

u1 + uj

)

= λ1,j

(

u1 + uj

)

. Then on the one hand f
(

u1 + uj

)

= λ1,j u1 + λ1,j uj .
On the other hand f

(

u1 + uj

)

= f(u1) + f
(

uj

)

= λ1u1 + λjuj . This implies λ1 = λ1,j = λj . Hence
f = λ1IdT .

Proposition 3.6 Let K be a field and (A, λ) a polarized non-zero abelian variety over K with big monodromy.

(a) EndK (A) = Z.

(b) For every other polarization λ′ : A → A∨ there exist a, b ∈ Z such that aλ = bλ′ and Sp
(

A[n], eλ
n

)

=
Sp
(

A[n], eλ ′

n

)

for all n coprime to abchar(K).

P r o o f. Part (a). Fix one large enough prime number � �= char(K) such that Sp
(

T�A, eλ
�∞
)

⊂ MK (A[�]).
This is possible because A has big monodromy by Proposition 3.2. The canonical morphism

i : EndK (A) ⊗ Z� −→ EndZ�
(T�(A))
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is injective and EndK (A) is a Z-algebra which is finitely generated and free as a Z-module (cf. [17, Lemma 11.2]).
The image im(i) is contained in

EndZ�
(T�A)GK = {f ∈ EndZ�

(T�A) | f ◦ ρT� A (σ) = ρT� A (σ) ◦ f ∀σ ∈ GK }
(

If K is finitely generated, then im(i) = EndZ�
(T�A)GK by a famous theorem of Faltings, but we do not make

use of this deep theorem.
)

As ρT� A (GK ) ⊃ Sp
(

T�A, eλ
�∞
)

, Lemma 3.5 implies EndZ�
(T�A)GK = Z�Id. It

follows that

rkZ�
(EndK (A) ⊗ Z�) = 1.

Because EndK (A) is finitely generated and free, this implies rkZ(EndK (A)) = 1 and EndK (A) = Z.
Part (b). The polarization λ : A → A∨ is an isogeny. Hence there exists a polarization ξ : A∨ → A and the

homomorphism

j : HomK (A,A∨) −→ End(A), f 	−→ ξ ◦ f

is injective. (If f ∈ ker(j), then ξ ◦ f = 0, hence im(f) ⊂ ker(ξ), and this implies im(f) = 0 because
im(f) is connected and ker(f) is finite.) Hence HomK (A,A∨) is a free Z-module of rank 1. As λ, λ′ ∈
HomK (A,A∨), we see that there are a, b ∈ Z such that aλ = bλ′. Now let n ∈ N be coprime to abchar(K).
Then aeλ

n (P,Q) = beλ ′

n (P,Q) for all P,Q ∈ A[n]. Because the residue classes of a and b lie in (Z/nZ)×, this
implies Sp

(

A[n], eλ
n

)

= Sp
(

A[n], eλ ′

n

)

.

4 Proof of the Conjecture of Geyer and Jarden, part (b)

Let (A, λ) be a polarized abelian variety of dimension g over a field K. In this section we will use the notation
K� := K(A[�]) and G� := G(K�/K) for every prime � �= char(K). Our main result in this section is the
following theorem.

Theorem 4.1 If (A, λ) has big monodromy, then for all e ≥ 2 and almost all σ ∈ Ge
K (in the sense of the

Haar measure) there are only finitely many primes � such that A(Ksep(σ))[�] �= 0.

The following Lemma 4.2 is due to Oskar Villareal (private communication). We thank him for his kind
permission to include it into our manuscript. This section in to a large extent inspired by an unpublished note of
him.

Lemma 4.2 Assume that A has big monodromy. Then there is a constant �0 such that [K(P ) : K]−1 ≤ [K� :
K]−

1
2 g for all primes � ≥ �0 and all P ∈ A[�] � {0}, where K(P ) denotes the residue field of the point P.

P r o o f. By assumption on A, there is a constant �0 such that Sp
(

A[�], eλ
�

)

⊂ MK (A[�]) for all primes
� ≥ �0 . Let � ≥ �0 be a prime and P ∈ A[�] � {0}. Then the F�-vector space generated inside A[�] by the
orbit X := {f(P ) | f ∈ MK (A[�])} is the whole of A[�], because A[�] is a simple F�

[

Sp
(

A[�], eλ
�

)]

-module
(cf. [11, Satz 9.15, p. 221]). Thus we can choose an F�-basis (P1 , . . . , P2g ) of A[�] with P1 = P in such a way
that each Pi ∈ X . Then each Pi is conjugate to P under the action of GK and [K(P ) : K] = [K(Pi) : K] for all
i. The field K� is the composite field K� = K(P1) . . . K(P2g ). It follows that

[K� : K] ≤ [K(P1) : K] . . . [K(P2g ) : K] = [K(P ) : K]2g .

The desired inequality follows from that.

The following notation will be used in the sequel: For sequences (xn )n and (yn )n of positive real numbers
we shall write xn ∼ yn , provided the sequence

(

xn

yn

)

n
converges to a positive real number. If xn ∼ yn and

∑∞
n=1 xn < ∞, then

∑∞
n=1 yn < ∞.

The proof of Theorem 4.1 will make heavy use of the following classical fact.

Lemma 4.3 (Borel-Cantelli, [4, 18.3.5].) Let (A1 , A2 , . . .) be a sequence of measurable subsets of a profinite
group G. Let

A :=
∞
⋂

n=1

∞
⋃

i=n

Ai = {x ∈ G | x belongs to infinitely many Ai}.
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8 S. Arias-de-Reyna, W. Gajda, and S. Petersen: The conjecture of Geyer and Jarden on torsion

(a) If
∑∞

i=1 μG (Ai) < ∞, then μG (A) = 0.

(b) If
∑∞

i=1 μG (Ai) = ∞ and (Ai)i∈N is a μG -independent sequence
(

i.e. for every finite set I ⊂ N we have
μG

(
⋂

i∈I Ai

)

=
∏

i∈I μG (Ai)
)

, then μG (A) = 1.

P r o o f o f T h e o r e m 4.1. Assume that A/K has big monodromy and let �0 be a constant as in the definition
of the term “big monodromy”. We may assume that �0 ≥ char(K). Let e ≥ 2 and define

X� := {σ ∈ Ge
K | A(Ksep(σ))[�] �= 0}

for every prime �. Let μ be the normalized Haar measure on Ge
K . Theorem 4.1 follows from Claim 1 below,

because Claim 1 together with the Borel-Cantelli Lemma 4.3 implies that

⋂

n∈N

⋃

�≥n prime

X�

has measure zero.
Claim 1. The series

∑

� prime μ(X�) converges.
Let � ≥ �0 be a prime number. Note that

X� =
⋃

P ∈A [�]�{0}

{

σ ∈ Ge
K | σi(P ) = P for all i

}

=
⋃

P ∈A [�]�{0}
Ge

K (P ) .

Let P(A[�]) = (A[�] � {0})/F
×
� be the projective space of lines in the F�-vector space A[�]. It is a projective

space of dimension 2g − 1. For P ∈ A[�] � {0} we denote by P := F
×
� P the equivalence class of P in P(A[�]).

For P ∈ P(A[�]) and P1 , P2 ∈ P there is an a ∈ F
×
� such that P1 = aP2 and P2 = a−1P1 , and this implies

K(P1) = K(P2). It follows that we can write

X� =
⋃

P ∈P(A [�])

Ge
K (P ) .

Hence

μ(X�) ≤
∑

P ∈P(A [�])

μ
(

Ge
K (P )

)

=
∑

P ∈P(A [�])

[K(P ) : K]−e ,

and Lemma 4.2 implies

μ(X�) ≤
∑

P ∈P(A [�])

[K� : K]−e/2g =
�2g − 1
� − 1

[K� : K]−e/2g =
�2g − 1
� − 1

|G� |−e/2g .

But G� contains Sp2g (F�) and

s� :=
∣

∣Sp2g (F�)
∣

∣ = �g 2
g
∏

i=1

(

�2i − 1
)

(cf. [22]). It is thus enough to prove the following
Claim 2. The series

∑

�≥�0 prime
�2 g −1
�−1 s

−e/2g
� converges.

But s� ∼ �g 2 +2+4+···+2g = �2g 2 +g and �2 g −1
�−1 ∼ �2g−1 , hence

�2g − 1
� − 1

s
−e/2g
� ∼ �2g−1�−e(g+ 1

2 ) = �(2−e)g−(1+ e
2 ) ≤ �−2 ,

because e ≥ 2. Claim 2 follows from that.
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5 Special sets of symplectic matrices over F�

This section contains a construction of certain special sets of symplectic matrices (cf. Theorem 5 below) that will
play a crucial role in the proof of part (a) of the Conjecture of Geyer and Jarden.

Let R be a commutative ring (usually R = Z/nZ or R = Z� in our applications). For g ≥ 2 we consider
the free R-module R2g and denote by (e1 , . . . , e2g ) the standard basis of R2g . We shall always identify a matrix
A ∈ GL2g (R) with the corresponding automorphism x 	→ Ax of R2g . Let

Jg =

⎛

⎜

⎜

⎜

⎝

J1
J1

. . .
J1

⎞

⎟

⎟

⎟

⎠

∈ GL2g (R) where J1 =
(

0 1
−1 0

)

.

Then there is a perfect alternating bilinear pairing e : R2g × R2g → R defined by e(x, y) := xtJgy. This pairing
e is called the canonical symplectic pairing. Note that e(ei, ei+1) = 1 = −e(ei+1 , ei) and e(ei, ej ) = 0 for
all odd i and all j �= i + 1. We define Sp2g (R) = Sp

(

R2g , e
)

and GSp2g (R) = GSp
(

R2g , e
)

(cf. Section 1).
Recall from Section 2 that there is a homomorphism ε : GSp2g (R) → R×, called the multiplicator map, such
that e(Ax,Ay) = ε(A)e(x, y) for all x, y ∈ R2g and all A ∈ GSp2g (R). For λ ∈ R× we define

GSp2g (R)[λ] :=
{

A ∈ GSp2g (Z/nZ) | ε(A) = λ
}

.

Now consider the special case R = Z/nZ. If q is a prime power coprime to n, then we denote by q its
residue class in (Z/nZ)× and by ordn (q) = |〈q〉| the order of q as element of the group (Z/nZ)×. Recall from
Section 3 that

GSp(q)
2g (Z/nZ) =

{

A ∈ GSp2g (Z/nZ) | ε(A) ∈ 〈q〉
}

and GSp(∞)
2g (Z/nZ) = GSp2g (Z/nZ).

For the rest of this section we specialize to the case R = F� and put V := F
2g
� . For u ∈ V and β ∈ F� consider

the automorphism

Tu [β] : v 	−→ v + βe(v, u)u

of V . Then Tu [β] is a transvection contained in Sp2g (F�) and furthermore the map

(F� ,+) −→ Sp2g (F�), β 	−→ Tu [β]

is a homomorphism.
We begin with two elementary lemmas that will be essential for Definition 5.3.

Lemma 5.1 Let � be a prime number. For each λ ∈ F
×
� , the matrices of GSp2g (F�)[λ] that fix the vector e1

are of the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 d b1 b2 . . .
0 λ 0 0 . . .
0 d1
...

... B
...

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(5.1)

with B = (bij )i,j=1,...,2g−2 ∈ GSp2g−2(F�)[λ], d, d1 , . . . , d2g−2 ∈ F� and

bk =
1
λ

⎛

⎝

g−1
∑

j=1

(

d2j−1b2j,k − d2j b2j−1,k

)

⎞

⎠ ∈ F� for each k = 1, . . . , 2g − 2. (5.2)
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10 S. Arias-de-Reyna, W. Gajda, and S. Petersen: The conjecture of Geyer and Jarden on torsion

P r o o f. Let A ∈ GSp2g (F�)[λ] be such that Ae1 = e1 . Let us write the matrix of A with respect to the
symplectic basis {e1 , e2 , . . . , e2g−1 , e2g}. For each k = 3, . . . , 2g we have e(e1 , ek ) = 0, so e(e1 , Aek ) = 0.
Therefore we can write the matrix A as

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 d b1 b2 . . .
0 d′ 0 0 . . .
0 d1
...

... B
...

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where in the second row we get all entries zero save the (2, 2)-th. Moreover, since e(e1 , e2) = 1, we get that
e(e1 , Ae2) = e(Ae1 , Ae2) = λe(e1 , e2) = λ, that is to say, d′ = λ. Furthermore, we have that e(e2 , ek ) = 0 for
all k = 3, . . . , 2g, hence e(Ae2 , Aek ) = 0. This gives rise to the Equations (5.2). Denote by e′ the canon-
ical symplectic pairing on F

2g−2
� and by (e′1 , . . . , e

′
2g−2) the standard basis of F

2g−2
� . Then e(Aei, Aej ) =

e′(Be′i−2 , Be′j−2) for i, j ≥ 3. Hence the fact that A ∈ GSp2g (F�)[λ] implies that B ∈ GSp2g−2(F�)[λ].
This proves that the conditions in the lemma are necessary.

We prove that they are also sufficient. Let A be a matrix satisfying conditions (1) and (2) of the lemma. Then
Ae1 = e1 because the first column of A is e1 . Furthermore e(Ae1 , Ae2) = λ = λe(e1 , e2) and e(Ae1 , Aek ) =
0 = λe(Ae1 , Aek ) for all k ≥ 3. For k ≥ 3 we have

e(Ae2 , Aek ) = −λbk +

⎛

⎝

g−1
∑

j=1

(

d2j−1b2j,k − d2j b2j−1,k

)

⎞

⎠ = 0 = λe(e2 , ek )

because of the Equations (5.2). Finally

e
(

Aei, Aej

)

= e′
(

Be′i−2 , Be′j−2
)

= λe′
(

e′i−2 , e
′
j−2
)

= λe
(

ei, ej

)

for all 3 ≤ i < j, because B ∈ GSp2g−2(F�)[λ]. Altogether we see that e(Aei, Aek ) = λe
(

ei, ej

)

for all i < j
and this suffices to imply A ∈ GSp2g (F�)[λ].

Lemma 5.2 The set of matrices in GSp2g (F�)[λ] that do not have the eigenvalue 1 has cardinality greater
than β(�, g)

∣

∣Sp2g−2(F�)
∣

∣, where

β(�, g) = �2g−1(�2g − 1
)� − 2
� − 1

.

P r o o f. The set of matrices A ∈ GSp2g (F�)[λ] that fix the vector e1 consists of matrices of the form (5.1),
where B belongs to GSp2g−2(F�)[λ], d, d1 , . . . , d2g−2 ∈ F� and b1 , . . . , b2g−2 are given by the formula (5.2) of
Lemma 5.1. Therefore the cardinality of the set of such matrices is exactly

�2g−1
∣

∣GSp2g−2(F�)[λ]
∣

∣ = �2g−1
∣

∣Sp2g−2(F�)
∣

∣.

On the other hand, the symplectic group acts transitively on the set of cyclic subgroups of V (cf. [11, p. 221,
Satz 9.15(a)]). Therefore if a matrix fixes any nonzero vector, it can be conjugated to one of the above. Hence,
to obtain an upper bound for the number of matrices with eigenvalue 1 one has to multiply the previous number
by the number of cyclic groups of V , namely �2 g −1

�−1 . Therefore the set of matrices in GSp2g (F�)[λ] that have the

eigenvalue 1 has cardinality less than �2g−1 �2 g −1
�−1

∣

∣Sp2g−2(F�)
∣

∣. Hence the number of matrices in GSp2g (F�)[λ]

that do not have the eigenvalue 1 is greater than
∣

∣Sp2g (F�)
∣

∣− �2g−1 �2 g −1
�−1

∣

∣Sp2g−2(F�)
∣

∣.
Now apply the well known identity (see for instance the proof of [11, p. 220, Satz 13(b)])

|Sp2g (F�)| =
(

�2g − 1
)

�2g−1
∣

∣Sp2g−2(F�)
∣

∣. (5.3)

We thus see that the set of matrices in GSp2g (F�)[λ] that do not have the eigenvalue 1 has cardinality greater
than β(�, g)

∣

∣Sp2g−2(F�)
∣

∣.

For α = (α3 , . . . , α2g ) ∈ F
2g−2
� we put uα := e2 + α3e3 + · · · + α2g e2g .

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Math. Nachr. (2013) / www.mn-journal.com 11

Definition 5.3 For each λ ∈ F
×
� choose once and for all a subset Bλ of matrices B ∈ GSp2g−2(F�)[λ] which

do not have the eigenvalue 1, with

|Bλ | = β(�, g − 1)|Sp2g−4(F�)|

(which can be done by Lemma 5.2). Define

Sλ (�)0 :=
{

A of the shape (5.1) in Lemma 5.1 such that:

B ∈ Bλ ,

d1 , . . . , d2g−2 ∈ F� ,

d ∈ F� �
{

− (b1 , . . . , b2g−2)(Id − B)−1 (d1 , . . . , d2g−2
)t }

and such that (2) is satisfied
}

,

Sλ(�) :=
{

Tuα
[β]−1 · A · Tuα

[β] : α3 , . . . , α2g , β ∈ F� , A ∈ Sλ (�)0
}

.

Let q be a power of a prime p �= �. Define

S(q)(�) :=
ord� q
⋃

i=1

Sqi (�).

Define also

S(∞)(�) =
⋃

λ∈F
×
�

Sλ(�).

Remark 5.4 The sets S(q)(�) and S(∞)(�) are not empty. Note moreover that each of the matrices in S(q)(�)
and S(∞)(�) fixes an element of V .

P r o o f. Let λ ∈ F
×
� . The set Sλ (�)0 is non-empty, because Bλ �= ∅, and every A ∈ Sλ (�)0 satisfies Ae1 = e1 .

Furthermore Sλ(�)0 ⊂ Sλ(�) as Tv [0] = Id for all v ∈ V . In particular Sλ(�) is non-empty. Each matrix in Sλ(�)
is conjugate to a matrix in Sλ(�)0 and hence fixes an element of V . The assertion follows from that.

6 Special sets of symplectic matrices over Z/nZ

This section is devoted to the proof of the following result.

Theorem 6.1 The following properties hold:

(1) Let q be a power of a prime number or q = ∞. Then

∑

�

∣

∣S(q)(�)
∣

∣

∣

∣GSp(q)
2g (F�)

∣

∣

= ∞.

In the first case � runs through all prime numbers coprime to q and in the second case through all prime
numbers.

(2) Let q be a power of a prime number p or q = ∞. Let �1 , . . . , �r be distinct prime numbers. If q �= ∞
assume that the �i’s are different from p. Let n = �1 . . . �r . Then

∣

∣S(q)(n)
∣

∣

∣

∣GSp(q)
2g (Z/nZ)

∣

∣

=
r
∏

j=1

∣

∣S(q)(�j )
∣

∣

∣

∣GSp(q)
2g

(

F�j

)∣

∣

where S(q)(n) ⊂ GSp2g (Z/nZ) is the set of matrices that belong to S(q)(�j ) modulo �j , for all j =
1, . . . , r.
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First we will prove part (1) of Theorem 6.1. We need a series of lemmata.
We can compute the cardinality of Sλ(�)0 explicitly.

Lemma 6.2 It holds that

|Sλ(�)0 | = �2g−2(� − 1)β(�, g − 1)
∣

∣Sp2g−4(F�)
∣

∣.

P r o o f. In the definition of the set Sλ(�)0 there are |Bλ | = β(�, g − 1)
∣

∣Sp2g−4(F�)
∣

∣ possible choices of B,
�2g−2 possible choices of d1 , . . . , d2g−2 ∈ F� and � − 1 possible choices of d.

Lemma 6.3 Let A ∈ Sλ(�)0 and x ∈ V . Then Ax = x if and only if x ∈ F�e1 .

P r o o f. We have Ae1 = e1 because the first column of A is e1 . Suppose Ax = x. It suffices to show that
x ∈ F�e1 . Consider the system of equations A

(

x1 , . . . , x2g

)t =
(

x1 , . . . , x2g

)t
over F� . Assume first that we

have a solution with x2 = 0. Then the last 2g − 2 equations boil down to

B
(

x3 , . . . , x2g

)t =
(

x3 , . . . , x2g

)t
.

But since B does not have the eigenvalue 1, it follows that x3 = · · · = x2g = 0, hence x belongs to the subspace
F�e1 of V generated by e1 .

Assume now that we have a solution
(

x1 , . . . , xg

)t
with x2 �= 0. Since 1 is not an eigenvalue of B, the matrix

Id − B is invertible, and we can write the last 2g − 2 equations as

(

x3/x2 , . . . , x2g /x2
)t = (Id − B)−1(d1 , . . . , d2g−2

)t
.

On the other hand, the first equation reads

d = −
(

b1 , . . . , b2g−2
)(

x3/x2 , . . . , x2g /x2
)t

.

Hence

d = −
(

b1 , . . . , b2g−2
)

(Id − B)−1(d1 , . . . , d2g−2
)t

.

But we have precisely asked that d does not satisfy such an equation, cf. Definition 5.3.

Lemma 6.4 Let α3 , . . . , α2g , α̃3 , . . . , α̃2g ∈ F� and β, β̃ ∈ F� . Assume that Tuα
[β]Tuα̃

[

β̃
]−1(e1) = λe1 for

some λ ∈ F
×
� . Then Tuα

[β] = Tuα̃

[

β̃
]

and β = β̃. Furthermore, if β �= 0, then uα = uα̃ .

P r o o f. We have

Tuα
[β](v) = v + βe

(

v, e2 + α3e3 + · · · + α2g e2g

)(

e2 + α3e3 + · · · + α2g e2g

)

In particular,

Tuα
[β](e1) = e1 + βe2 + βα3e3 + · · · + βα2g e2g ,

Tuα
[β](e2) = e2 ,

Tuα
[β](ek ) = ek + βαk+1e2 + βαk+1

2g
∑

j=3

αjej for k ≥ 3, k odd,

Tuα
[β](ek ) = ek − βαk−1e2 − βαk−1

2g
∑

j=3

αjej for k ≥ 3, k even.
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Hence

Tuα
[β]Tuα̃

[

β̃
]−1(e1) = Tuα

[β]

(

e1 − β̃e2 − ˜β

2g
∑

k=3

α̃k ek

)

= e1 + βe2 + βα3e3 + · · · + βα2g e2g

− ˜βe2

− ˜β

2g
∑

k = 3
k odd

α̃k

⎛

⎝ek + βαk+1e2 + βαk+1

2g
∑

j=3

αjej

⎞

⎠

− ˜β

2g
∑

k = 3
k even

α̃k

⎛

⎝ek − βαk−1e2 − βαk−1

2g
∑

j=3

αjej

⎞

⎠

= e1 + βe2 + βα3e3 + · · · + βα2g e2g

− ˜βe2

− ˜β

2g
∑

j=3

α̃j ej

− ˜ββ

⎛

⎝

2g
∑

k = 3
k odd

αk+1 α̃k −
2g
∑

k = 3
k even

αk−1 α̃k

⎞

⎠e2

− ˜ββ

2g
∑

j=3

αj

⎛

⎝

2g
∑

k = 3
k odd

αk+1 α̃k −
2g
∑

k = 3
k even

αk−1 α̃k

⎞

⎠ej .

Therefore, if Tuα
[β]Tuα̃

[

β̃
]−1(e1) is a multiple of e1 , it is necessarily equal to e1 and moreover we have that

the coefficients of the other ek vanish, so we get the following system of equations: the equation corresponding
to e2

β − ˜β − ˜ββ

⎛

⎝

2g
∑

k = 3
k odd

αk+1 α̃k −
2g
∑

k = 3
k even

αk−1 α̃k

⎞

⎠ = 0, (6.1)

and, for each j = 3, . . . , 2g, the equation corresponding to ej

βαj − ˜βα̃j − ˜ββαj

⎛

⎝

2g
∑

k = 3
k odd

αk+1 α̃k −
2g
∑

k = 3
k even

αk−1 α̃k

⎞

⎠ = 0. (6.2)

If β = 0, then Tuα
[β] = Id and Tuα

[β]Tuα̃

[

β̃
]−1(e1) = Tuα̃

[

− β̃
]

(e1) = e1 − β̃e2 − β̃α̃3e3 −· · ·− β̃α̃2g e2g ,
and since this must be equal to λe1 , we conclude that β̃ = 0, and Tuα̃

[

β̃
]

= Id. Similarly if β̃ = 0, then β = 0
and Tuα̃

[

β̃
]

= Id = Tuα
[β].

Assume now that β �= 0, β̃ �= 0. From Equation (6.1) we obtain that
⎛

⎝

2g
∑

k = 3
k odd

αk+1 α̃k −
2g
∑

k = 3
k even

αk−1 α̃k

⎞

⎠ =
β − β̃

ββ̃
;

substituting this in Equation (6.2) we get that αj = α̃j , and once we have this for all j = 3, . . . , 2g, it follows
from Equation (6.1) that β = ˜β.
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Lemma 6.5 Let A, Ã ∈ S�(λ)0 . Assume that there exist α3 , . . . , α2g , α̃3 , . . . , α̃2g ∈ F� and β, β̃ ∈ F� such

that Tuα
[β]−1 · A · Tuα

[β] = Tuα̃

[

˜β
]−1 · ˜A · Tuα̃

[

˜β
]

. Then A = ˜A and β = β̃. If β �= 0, then αi = α̃i for all
i ≥ 3.

P r o o f. Since ˜A = Tuα̃

[

˜β
]

Tuα
[β]−1 ·A ·Tuα

[β]Tuα̃

[

˜β
]−1

fixes e1 , we see that A fixes Tuα
[β]Tuα̃

[

˜β
]−1

e1 .

Lemma 6.3 implies Tuα
[β]Tuα̃

[

˜β
]−1

e1 = λe1 for some λ ∈ F
×
� . The assertion follows from that by

Lemma 6.4.

Next we can compute the cardinality of Sλ(�) in terms of |Sλ (�)0 |.
Lemma 6.6 |Sλ (�)| =

(

�2g−2(� − 1) + 1
)

|Sλ(�)0 |.

P r o o f. For A ∈ Sλ(�)0 we define

CA =
{

Tuα
[β]ATuα

[β]−1 : α3 , . . . , α2g , β ∈ F�

}

.

Lemma 6.5 implies that |CA | = �2g−2(� − 1) + 1 and that CA ∩ CA ′ = ∅ for A �= A′ in Sλ(�)0 . Furthermore
Sλ(�) =

⋃

A∈Sλ (�)0
CA , cf. Definition 5.3. Thus |Sλ (�)| =

(

�2g−2(� − 1) + 1
)

|Sλ(�)0 |.

Lemma 6.7

(1) Let q be a power of a prime number p, and let n be a squarefree natural number such that p � n. The

cardinality of GSp(q)
2g (Z/nZ) equals ordn (q) ·

∏

�|n |Sp2g (F�)|.

(2) Let q = ∞, and let n be a squarefree natural number. The cardinality of GSp(q)
2g (Z/nZ) equals

∏

�|n (� − 1)|Sp2g (F�)|.

P r o o f. By the Chinese Remainder Theorem |Sp(Z/nZ)| =
∏

�|n |Sp(Z/�Z)|. Furthermore the multiplicator
map ε : GSp2g (Z/nZ) → (Z/nZ)× is an epimorphism with kernel Sp2g (Z/nZ). Thus

∣

∣GSp(∞)
2g (Z/nZ)

∣

∣ = |GSp2g (Z/nZ)| = |Sp(Z/nZ)|
∣

∣(Z/nZ)×|.

Furthermore |(Z/nZ)×| =
∏

�|n (� − 1). Hence (2) holds true.

Now let q be a prime power which is coprime to n. It follows from the definitions that GSp(q)
2g (Z/nZ) =

ε−1(〈q〉). Thus

∣

∣GSp(q)
2g (Z/nZ)

∣

∣ = |〈q〉|| ker(ε)| = |〈q〉||Sp2g (Z/nZ)|.

This implies (1) because ordn (q) = |〈q〉|.

P r o o f o f T h e o r e m 6.1(1). Let q be a power of a prime p or q = ∞, and let � be a prime. In the first case,
let us also assume � �= p. In the first case define G = 〈q〉 ⊂ F

×
� ; then |G| = ord�(q). In the second case define

|G| = F
×
� ; then |G| = (� − 1). In both cases

∣

∣GSp(q)
2g (F�)

∣

∣ = |G|
∣

∣Sp2g (F�)
∣

∣ by Lemma 6.7. Furthermore

∣

∣Sp2g (F�)
∣

∣ =
(

�2g − 1
)

�2g−1
∣

∣Sp2g−2(F�)
∣

∣ =
(

�2g − 1
)

�2g−1(�2g−2 − 1
)

�2g−3
∣

∣Sp2g−4(F�)
∣

∣.

(cf. the identity (3) in the proof of Lemma 5.2). Thus

∣

∣GSp(q)
2g (F�)

∣

∣ = |G|
(

�2g − 1
)

�2g−1(�2g−2 − 1
)

�2g−3
∣

∣Sp2g−4(F�)
∣

∣ (1).

Furthermore S(q)(�) =
⋃

λ∈G Sλ(�) and hence

∣

∣S(q)(�)
∣

∣ = |G||Sλ (�)| = |G|
(

�2g−2(� − 1) + 1
)

|Sλ (�)0 |

by Lemma 6.6. Recall from Lemma 6.2 that

|Sλ(�)0 | = �2g−2(� − 1)β(�, g − 1)
∣

∣Sp2g−4(F�)
∣

∣.
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It follows that
∣

∣S(q)(�)
∣

∣ = |G|
(

�2g−2(� − 1) + 1
)

�2g−2(� − 1)β(�, g − 1)
∣

∣Sp2g−4(F�)
∣

∣ (2)

Dividing Equation (1) by Equation (2) we obtain
∣

∣S(q)(�)
∣

∣

∣

∣GSp(q)
2g (F�)

∣

∣

=

(

�2g−2(� − 1) + 1
)

�2g−2(� − 1)β(�, g − 1)
(

�2g − 1
)

�2g−1
(

�2g−2 − 1
)

�2g−3
∼ 1

�
,

and the sum
∑

� �=p prime
1
� diverges.

For the rest of the section, q will be a power of a prime p.
For each squarefree n not divisible by p and each i = 1, . . . , ordn (q), define the set Sqi (n) :=

{

A ∈
S(q)(n) | ε(A) = qi modulo n

}

.

Lemma 6.8 Let q be a power of a prime number p. Let �1 , . . . , �r be distinct primes which are different from
p, and consider n = �1 · · · · · �r . Let i ∈ {1, . . . , ordn (q)}. Then there is a bijection

Sqi (n) � Sqi (�1) × · · · × Sqi (�r ).

P r o o f. Consider the canonical projection

π : Sqi (n) −→ Sqi (�1) × · · · × Sqi (�r )

A 	−→ (A mod �1 , . . . , A mod �r ).

This is clearly an injective map. Now we want to prove surjectivity. For each j, take some matrix Bj ∈ Sqi

(

�j

)

.
By the Chinese Remainder Theorem, there exists A ∈ GSp2g (Z/nZ) such that A projects onto Bj for each

j. Note that in particular A ∈ S(q)(n). Since ε(A) is congruent to ε(Bj ) = qi modulo �j for all j, we get that
ε(A) = qi modulo n. Therefore A ∈ Sqi (n).

P r o o f o f T h e o r e m 6.1(2).
Case q �= ∞: On the one hand, since the cardinality of |Sqi (�)| does not depend on i (cf. Lemmas 6.6 and

6.2), we obtain

∏

�|n

∣

∣S(q)(�)
∣

∣

∣

∣GSp(q)
2g (F�)

∣

∣

=
∏

�|n

ord�(q)|Sq (�)|
ord�(q)

∣

∣Sp2g (F�)
∣

∣

=
∏

�|n

|Sq (�)|
∣

∣Sp2g (F�)
∣

∣

(1).

On the other hand, taking into account again that
∣

∣Sqi (�)
∣

∣ is independent of i, Lemma 6.7, and that
∣

∣Sqi (n)
∣

∣ =
∏

�|n
∣

∣Sqi (�)
∣

∣ by Lemma 6.8, we get

∣

∣S(q)(n)
∣

∣

∣

∣GSp(q)
2g (Z/nZ)

∣

∣

=
∑ordn (q)

i=1

∣

∣Sqi (n)
∣

∣

ordn (q)
∏

�|n
∣

∣Sp2g (F�)
∣

∣

=

∑ordn (q)
i=1

(

∏

�|n
∣

∣Sqi (�)
∣

∣

)

ordn (q)
∏

�|n
∣

∣Sp2g (F�)
∣

∣

=

∑ordn (q)
i=1

(

∏

�|n
∣

∣Sq (�)
∣

∣

)

ordn (q)
∏

�|n
∣

∣Sp2g (F�)
∣

∣

=
ordn (q)

(

∏

�|n
∣

∣Sq (�)
∣

∣

)

ordn (q)
∏

�|n
∣

∣Sp2g (F�)
∣

∣

=
∏

�|n

∣

∣Sq (�)
∣

∣

∣

∣Sp2g (F�)
∣

∣

(2).

Our assertion follows comparing the right-hand sides of (1) and (2).
Case q = ∞: By the Chinese Remainder Theorem, there is a canonical isomorphism

c : GSp(∞)
2g (Z/nZ) ∼=

r
∏

i=1

GSp(∞)
2g (Z/�iZ)
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and

S(∞)(n) = c−1(S(∞)(�1) × · · · × S(∞)(�r )
)

by the definition of S(∞)(n). It follows that

∣

∣S(∞)(n)
∣

∣

∣

∣GSp(∞)
2g (Z/nZ)

∣

∣

=
r
∏

i=1

∣

∣S(∞)(�i)
∣

∣

∣

∣GSp(∞)
2g (Z/�iZ)

∣

∣

Remark 6.9 In the definition of the set Sqi (�)0 (cf. Definition 5.3), we choose a subset Bq i of matrices in
GSp2g−2(F�)[qi ] without the eigenvalue 1, which is large enough to ensure that part (1) of Theorem 6.1 holds.
For a concrete value of g, one can choose such set more explicitly. For instance, when g = 2, instead of Bq i one
can consider the set

B′
q i :=

{(

b1,1 b1,2
b2,1 b2,2

)

: b1,1 ∈ F� , b2,2 ∈ F� �
{

1 − b1,1 + qi
}

, b1,2 ∈ F
×
� , b2,1 = b−1

1,2

(

b1,1b2,2 − qi
)

}

of �(� − 1)2 matrices, which can also be used to prove the second part of Theorem 6.1 in the case of the group
GSp4(F�).

7 Proof of the Conjecture of Geyer and Jarden, part (a)

Theorem 7.1 Let (A, λ) be a polarized abelian variety over a finitely generated field K. Assume that
A/K has big monodromy. Then for almost all σ ∈ GK there are infinitely many prime numbers � such that
A(Ksep(σ))[�] �= 0.

P r o o f. Let p := char(K). Let G = GK and g := dim(A). Denote by ecan
�∞ (resp. ecan

n ) the canonical
symplectic pairing on T�(A) (resp. A[n]), cf. the beginning of Section 5. Recall from Section 2 that we have fur-
thermore the Weil pairing eλ

�∞
(

resp. eλ
n

)

on T�(A) (resp. on A[n]). We fix once and for all for every prime number
� �= p, � > deg(λ) a symplectic basis of

(

T�(A), eλ
�∞
)

(cf. [2, Chap. 9, paragraph 5, no. 1, Thm. 1, p. 79]). This
defines an isometry

(

T�(A), eλ
�∞
) ∼= (Z� , e

can
�∞ ), from which we obtain an isometry

(

A[�i ], eλ
�i

) ∼=
(

A[�i ], ecan
�i

)

for every i. Finally, by the Chinese remainder theorem, we obtain an isometry
(

A[n], eλ
n

) ∼=
(

(Z/nZ)2g , ecan
n

)

for every n which is coprime to p and to deg(λ). We get an isomorphism GSp
(

A[n], eλ
n

) ∼= GSp2g (Z/nZ) for
every such n, and we consider the representations

ρn : GK −→ GSp2g (Z/nZ)

attached to A/K after these choices. If m is a divisor of n, then we denote by rn,m : GSp2g (Z/nZ) →
GSp2g (Z/mZ) the corresponding canonical map, such that rn,m ◦ ρn = ρm .

Let q := q(K) be the cardinality of the algebraic closure of the prime field of K in K. Thus q = ∞ if p = 0
and q is a power of p otherwise. As A has big monodromy, we find by Proposition 3.4 an integer c (divisible by
deg(λ) and by p, if p �= 0) such that im(ρn ) = GSp(q)

2g (Z/nZ), for every n coprime to c.
For every prime number � > c, we define

X� := {σ ∈ GK | A(Ksep(σ))[�] �= 0}.

Thus, it suffices to prove that
⋂

n>c

⋃

�≥n prime X� has measure 1. Let S(q)(n) ⊂ GSp(q)
2g (Z/nZ) be the special

sets of symplectic matrices defined in Section 4. By Remark 5.4 ρ−1
�

(

S(q)(�)
)

⊂ X� for every prime number
� > c. Thus is suffices to prove that

⋂

n>c

⋃

�≥n prime ρ−1
�

(

S(q)(�)
)

has measure 1. By the basic properties of the

Haar measure, μG

(

ρ−1
n

(

S(q)(n)
))

= |S ( q ) (n)|
|GSp( q )

2 g (Z/nZ)|
for all integers n coprime to c. Hence part (1) of Theorem 6.1

implies that
∑

�>c prime μG

(

ρ−1
�

(

S(q)(�)
))

= ∞.
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Furthermore, if �1 , . . . , �r > c are distinct prime numbers and n = �1 . . . �r , then

r
⋂

i=1

ρ−1
�i

(

S(q)(�i)
)

= ρ−1
n

(

S(q)(n)
)

and part (2) of Theorem 6.1 implies

μG

(

r
⋂

i=1

ρ−1
�i

(

S(q)(�i)
)

)

=
r
∏

i=1

μG

(

ρ−1
�i

(

S(q)(�i)
))

.

Hence
(

ρ−1
�

(

S(q)(�)
))

�>c
is a μG -independent sequence of subsets of G. It follows from Lemma 4.3 that

⋂

n>c

⋃

�≥n prime ρ−1
�

(

S(q)(�)
)

has measure 1, as desired.

We now combine the main theorems 4.1 and 7.1 of this paper with existing computations of monodromy
groups. We will obtain many examples of abelian varieties for which the Conjecture of Geyer and Jarden can be
shown. Certainly, the most prominent monodromy computation is the classical theorem of Serre (cf. [19], [20] for
the number field case; the generalization to finitely generated fields of characteristic zero is well-known): If A is
an abelian variety over a finitely generated field K of characteristic zero with End(A) = Z and dim(A) = 2, 6
or odd, then A/K has big monodromy. Here End(A) = EndK̃ (AK̃ ) stands for the absolute endomorphism ring
of A.

Furthermore we focus our attention at abelian varieties with End(A) = Z, which have been recently consid-
ered by Chris Hall in his open image theorem [10]. We will say that an abelian variety A over a finitely generated
field K is of Hall type, if End(A) = Z and K has a discrete valuation v such that the connected component of
the special fibre of the Néron model A → Spec(Ov ) of A over the discrete valuation ring Ov of v is an extension
of an abelian variety by a 1-dimensional torus. The following result, gives examples of abelian varieties with big
monodromy in all dimensions (and including the case char(K) > 0): If A is an abelian variety of Hall type over
a finitely generated infinite field K, then A/K has big monodromy. In the special case where K is a global field
this has recently been proved by Hall (cf. [9], [10]). The generalization to an arbitrary finitely generated ground
field K is carried out in our paper [1] using methods of group theory, finiteness properties of the fundamental
group of schemes and Galois theory of large field extensions. In combination with the main theorem we obtain
the following

Corollary 7.2 Let A be an abelian variety over a finitely generated infinite field K. Assume that either condi-
tion (i) or (ii) is satisfied.

(i) A is of Hall type.

(ii) char(K) = 0, End(A) = Z and dim(A) = 2, 6 or odd.

Then the Conjecture of Geyer and Jarden holds true for A/K.

We thus obtain over every finitely generated infinite field and for every dimension families of abelian varieties
for which the Conjecture of Geyer and Jarden holds true. In the case when char(K) > 0 the corollary offers the
first evidence for the Conjecture of Geyer and Jarden on torsion going beyond the case of elliptic curves.
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