Iwasawa Main Conjecture in cyclotomic function fields

Andrea Bandini (Parma)

Joint work with: Bruno Anglés (Caen)

Francesc Bars (UAB – Barcelona)

Ignazio Longhi (Xi'an Jiaotong — Liverpool)

Cyclotomic extensions: number fields

For any $n \in \mathbb{N}$ and p an odd prime, let

ullet $\mathbb{Q}_n:=\mathbb{Q}(oldsymbol{\mu}_{p^{n+1}})$

$$\mathbb{Q} \stackrel{p-1}{\subset} \mathbb{Q}_0 \stackrel{p}{\subset} \mathbb{Q}_1 \stackrel{p}{\subset} \cdots \subset \mathbb{Q}_n \subset \cdots \subset \bigcup \mathbb{Q}(\mu_{p^n}) = \mathbb{Q}(\mu_{p^\infty}) .$$

• $\mathbb{Q}_{cyc} := \bigcup \mathbb{Q}_n$ the *p*-cyclotomic extension of \mathbb{Q} .

Properties

- 1. $\operatorname{Gal}(\mathbb{Q}_{cyc}/\mathbb{Q}) \simeq \lim_{\stackrel{\longleftarrow}{\leftarrow}_n} \operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}) \simeq \lim_{\stackrel{\longleftarrow}{\leftarrow}_n} \left(\mathbb{Z}/p^{n+1}\right)^* \simeq \mathbb{Z}/(p-1) \times \mathbb{Z}_p$.
- **2.** ramified only at ∞ and p, in particular $\mathbb{Q}_{cyc}/\mathbb{Q}_0$ is ramified (totally) only at p.

 $\mathbb{Q}^{\mathrm{Gal}(\mathbb{Q}_0/\mathbb{Q})}_{cyc}$ is called the **cyclotomic** \mathbb{Z}_p -extension of \mathbb{Q} .

For any number field K, $K\mathbb{Q}^{\operatorname{Gal}(\mathbb{Q}_0/\mathbb{Q})}_{cyc}$ is the **cyclotomic** \mathbb{Z}_p -extension of K.

The Iwasawa algebra is the ring

$$\Lambda := \lim_{\substack{\longleftarrow \\ n}} \mathbb{Z}_p[\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}_0)] = \mathbb{Z}_p[[\operatorname{Gal}(\mathbb{Q}_{cyc}/\mathbb{Q}_0)]] \simeq \mathbb{Z}_p[[T]] .$$

The last isomorphism is non-canonical and given by $\gamma \mapsto T-1$ where γ is a chosen topological generator of $\mathrm{Gal}(\mathbb{Q}_{cyc}/\mathbb{Q}_0)$.

Cyclotomic extensions: function fields

- $F := \mathbb{F}_q(\theta)$ with $q = p^r \geqslant 3$ and fix $\frac{1}{\theta}$ as the prime at ∞ .
- Let $A := \mathbb{F}_q[\theta]$ and fix a prime \mathfrak{p} of A of degree d.
- Let Φ be the Carlitz module associated to A: it is an \mathbb{F}_q -linear ring homomorphism

$$\Phi: A \to F\{\tau\}$$

$$\theta \mapsto \Phi_{\theta} = \theta \tau^0 + \tau$$

$$\theta^2 \mapsto \Phi_{\theta^2} = (\theta \tau^0 + \tau)(\theta \tau^0 + \tau) = \theta^2 \tau^0 + \theta \tau + \tau \theta + \tau^2 = \theta^2 \tau^0 + (\theta + \theta^q)\tau + \tau^2 ,$$

where $F\{\tau\}$ is the skew polynomial ring with $\tau f = f^q \tau$ for any $f \in F$.

• For any ideal \mathfrak{a} of A write

$$\Phi[\mathfrak{a}] := \{ x \in \overline{F} \mid \Phi_a(x) = 0 \,\,\forall \,\, a \in \mathfrak{a} \} \,\,,$$

it is an A-module isomorphic to A/\mathfrak{a} and such that $\operatorname{Gal}(F(\Phi[\mathfrak{a}])/F) \simeq (A/\mathfrak{a})^*$.

Example: $\Phi[(\theta)] \simeq \mathbb{F}_q$, indeed

$$\Phi_{\theta}(a) = \theta a + a^q = 0 \iff a = 0 \text{ or } a^{q-1} = -\theta.$$

Moreover $F(\Phi[(\theta)]) = F(\sqrt[q-1]{-\theta})$ and $\mu_{q-1} \subset \mathbb{F}_q$, so $\operatorname{Gal}(F(\Phi[(\theta)])/F) \simeq \mathbb{F}_q^*$.

Cyclotomic extensions: function fields

For any $n \in \mathbb{N}$, let

•
$$F_n := F(\Phi[\mathfrak{p}^{n+1}])$$

$$F \subset F_0 \subset F_1 \subset \cdots \subset F_n \subset \cdots \subset \bigcup F(\Phi[\mathfrak{p}^n]) = F(\Phi[\mathfrak{p}^\infty])$$
.

• $\mathcal{F} := \bigcup F_n$ the \mathfrak{p} -cyclotomic extension of F.

Properties

$$\operatorname{Gal}(\mathcal{F}/F) \simeq \varprojlim_{n} \operatorname{Gal}(F_{n}/F) \simeq \varprojlim_{n} \left(A/\mathfrak{p}^{n+1}\right)^{*}$$

1.

$$\simeq \operatorname{Gal}(F_0/F) \times \operatorname{Gal}(\mathcal{F}/F_0) \simeq \mathbb{Z}/(q^d-1) \times \mathbb{Z}_p^{\infty} := \Delta \times \Gamma$$

2. ramified only at ∞ and \mathfrak{p} , in particular \mathcal{F}/F_0 is ramified (totally) only at \mathfrak{p} and the inertia group of ∞ is $\mathbb{F}_q^* \hookrightarrow \Delta$ (note $|\Delta| = q^{\deg(\mathfrak{p})} - 1 = q^d - 1$).

The extension \mathcal{F}^{Δ}/F is a \mathbb{Z}_p^{∞} -extension of F cyclotomic at \mathfrak{p} .

The **Iwasawa algebra** is the ring

$$\Lambda := \lim_{\stackrel{\longleftarrow}{\stackrel{\longleftarrow}{\stackrel{\frown}{\longrightarrow}}}} \mathbb{Z}_p[\operatorname{Gal}(F_n/F_0)] = \mathbb{Z}_p[[\Gamma]] \simeq \mathbb{Z}_p[[T_n : n \in \mathbb{N}]] .$$

Iwasawa modules: global fields

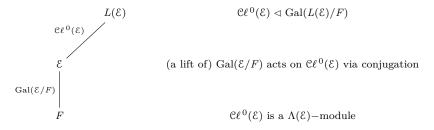
F a global field and E/F a finite extension

- $\operatorname{\mathcal{C}\!\ell}^{\,0}(E)$ the p-part of the group of divisor classes of E of degree 0 (class group);
- L(E) the maximal unramified abelian p-extension of E (totally split at ∞);
- $\mathcal{C}\ell^0(E) \simeq \mathrm{Gal}(L(E)/E)$ via the (canonical) Artin map.

Same notations for infinite extensions \mathcal{E}/F where

$$\Lambda(\mathcal{E}) := \mathbb{Z}_p[[\operatorname{Gal}(\mathcal{E}/F)]] \quad \text{and} \quad \mathcal{C}\ell^0(\mathcal{E}) := \lim_{\stackrel{\longleftarrow}{E}} \mathcal{C}\ell^0(E)$$

(the limit is on the natural norm maps as E runs among the finite subextensions of \mathcal{E}/F).



Iwasawa modules: global fields

Theorem (Iwasawa 60's, Greenberg 70's,...)

Let \mathcal{E}/F be a \mathbb{Z}_p^d -extension $(d<\infty)$, then $\mathrm{C}\ell^0(\mathcal{E})$ is a finitely generated torsion $\Lambda(\mathcal{E})$ -module.

A f.g.t. $\Lambda(\mathcal{E})$ -module N is pseudo-null if $ht(Ann_{\Lambda(\mathcal{E})}(N)) \geqslant 2$ (i.e., N has at least 2 relatively prime annihilators).

Theorem (Structure Theorem for f.g.t. Iwasawa modules)

For any f.g.t. $\Lambda(\mathcal{E})$ -module M there is a pseudo-isomorphism (i.e. with pseudo-null kernel and cokernel)

$$M \sim_{\Lambda(\mathcal{E})} \bigoplus_{i=1}^s \Lambda(\mathcal{E})/(f_i^{e_i}) \qquad \text{i.e.} \qquad \bigoplus_{i=1}^s \Lambda(\mathcal{E})/(f_i^{e_i}) \hookrightarrow M \twoheadrightarrow N$$

where the f_i are irreducible elements of $\Lambda(\mathcal{E}) \simeq \mathbb{Z}_p[[T_1, \ldots, T_d]]$, f_i , e_i and s are uniquely determined by M and N is pseudo-null.

Iwasawa modules: characteristic ideals

Definition (Characteristic ideal)

For a f.g.t module as above we define the characteristic ideal as

$$Ch_{\Lambda(\mathcal{E})}(M) := \left(\prod_{i=1}^{s} f_i^{e_i}\right) .$$

A f.g.t. $\Lambda(\mathcal{E})$ -module N is pseudo-null (i.e. $N \sim_{\Lambda(\mathcal{E})} 0$) $\iff Ch_{\Lambda(\mathcal{E})}(N) = (1)$.

Theorem (Iwasawa)

Let K_{∞}/K be a \mathbb{Z}_p -extension of a number field K and and let $f_{K_{\infty}}$ be a (polynomial) generator of $Ch_{\Lambda(K_{\infty})}(\mathfrak{C}\ell^0(K_{\infty}))$. Let

- μ such that $p^{\mu} \mid f_{K_{\infty}}$ and $p^{\mu+1} \nmid f_{K_{\infty}}$;
- $\lambda = \deg(f_{K_{\infty}})$.

Then

$$|\mathcal{C}\ell^{0}(K_{n})| = p^{\mu p^{n} + \lambda n + O(1)} \quad \forall n \gg 0.$$

ζ -functions and L-functions (sketch)

Cyclotomic extension of $\mathbb Q$

Let Δ be the group of Dirichelet characters of the number field $\mathbb{Q}(\mu_p)$, then

$$\zeta_{\mathbb{Q}(\mu_p)}(s) = \sum_{I \neq 0} N_{\mathbb{Q}(\mu_p)/\mathbb{Q}}(I)^{-s} = \prod_{\chi \in \Delta} \left(\sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} \right) = \prod_{\chi \in \Delta} L(s, \chi) .$$

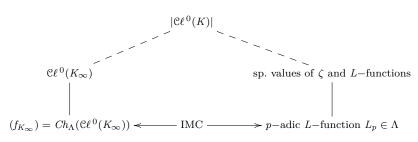
The special value in s=1 is related to the class number and other arithmetically relevant information on the field $\mathbb{Q}(\mu_p)$.

- $\Delta \simeq \operatorname{Gal}(\mathbb{Q}(\boldsymbol{\mu}_p)/\mathbb{Q})$ is cyclic generated by the Teichmüller character ω (recall $\omega(a) \equiv a \pmod{(1-\zeta_p)}$).
- For characters ω^i (*i* even and nonzero) Iwasawa defined a *p*-adic *L*-function $L_p(s,\omega^i)$ which interpolates the special values of $L(s,\omega^i)$.
- Iwasawa proved that there exist power series $f(T,\omega^i) \in \mathbb{Z}_p[[T]] \simeq \Lambda(\mathbb{Q}_{cyc})$ such that

$$L_p(s,\omega^i) = f((1+p)^s - 1,\omega^i)$$
.

Nowadays many generalizations are known: a similar procedure works for any number field and some of its \mathbb{Z}_p -extensions (the ones with more relevant arithmetical meaning).

Main Conjecture



Consequences/related results:

- special values of ζ -functions;
- arithmetic properties of (generalized) Bernoulli numbers;
- vanishing of the μ -invariant for cyclotomic extensions K_{cyc}/K , i.e., the p-adic L-function is nonzero modulo p (Ferrero-Washington theorem when K/\mathbb{Q} is abelian).

Function field setting:

- Analytic side analogues of ζ -functions, Bernoulli numbers and so on (mainly due to Carlitz and Goss);
- Algebraic side arithmetic \mathbb{Z}_p -extension, geometric \mathbb{Z}_p^d -extensions, no arithmetic informations on \mathbb{Z}_p^∞ -extensions.

Main Conjecture and BSD

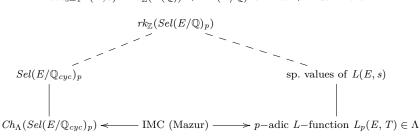
Let E be an elliptic curve (defined over $\mathbb Q$) and consider the exact sequence

$$E(\mathbb{Q}) \otimes \mathbb{Q}_p/\mathbb{Z}_p \hookrightarrow Sel(E/\mathbb{Q})_p \twoheadrightarrow \mathrm{III}(E/\mathbb{Q})[p^{\infty}]$$

and the L-function L(E, s) associated to E.

BSD Conjecture

 $ord_{s=1}L(E,s) = rk_{\mathbb{Z}}(E(\mathbb{Q})) + \operatorname{III}(E/\mathbb{Q})$ is finite + much more.



Actually this is the most used strategy to produce results on BSD (Kato, Bertolini-Darmon, Skinner-Urban,...).

Fitting ideals: Greither-Popescu IMRN '12 and Crelle '13

Let \mathcal{F}/F be the \mathfrak{p} -cyclotomic extension of $F = \mathbb{F}_q(\theta)$ with $\mathrm{Gal}(F_0/F) =: \Delta$, $\mathrm{Gal}(\mathcal{F}/F_0) =: \Gamma$ and (non-noetherian) Iwasawa algebra $\Lambda(\mathcal{F})$. Let $\mathcal{C}\ell^0(\mathcal{F})$ be the Iwasawa module of \mathcal{F} . We do not have a structure theorem for $\Lambda(\mathcal{F})$ -modules (hence no characteristic ideal), so we compute Fitting ideals for the class groups of $F_n = F(\Phi[\mathfrak{p}^{n+1}])$ in the group ring $\mathbb{Z}_p[\mathrm{Gal}(F_n/F)]$.

Definition (Fitting ideal)

Let M be a f.g. R-module. The Fitting ideal of M over R, Fitt $_R(M)$ is the ideal of R generated by the determinants of all the (minors of the) matrices of relations for a fixed set of generators of M.

Let $\overline{\mathbb{F}}_q$ be a fixed algebraic closure of \mathbb{F}_q and fix a topological generator γ for $G_{\mathbb{F}_q} := \operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ (the *arithmetic Frobenius*). Denote by

$$T_p(L) := T_p(Jac(\mathfrak{X}_L)(\overline{\mathbb{F}}_q))$$
.

the p-adic Tate module of the $\overline{\mathbb{F}}_q$ -rational points of the Jacobian of the curve \mathfrak{X}_L associated with the field L.

Lemma

$$\mathcal{C}\ell^{0}(F_{n}) \simeq T_{p}(F_{n})/(1-\gamma^{-1})T_{p}(F_{n}) =: T_{p}(F_{n})_{G_{\mathbb{F}_{q}}}.$$

Fitting ideals: Greither-Popescu IMRN '12 and Crelle '13

The module $T_p(F_n)$ fits into the exact sequence

$$T_p(F_n) \hookrightarrow T_p(\mathfrak{M}_{S,n}) \twoheadrightarrow L_n$$

where $T_p(\mathcal{M}_{S,n})$ is the *p*-adic realization of a motive \mathcal{M}_S (defined via divisors), L_n is the kernel of the degree map $\mathbb{Z}_p[\overline{\mathbb{F}}_q F_n(S)] \longrightarrow \mathbb{Z}_p$ and $\overline{\mathbb{F}}_q F_n(S)$ is the set of places of $\overline{\mathbb{F}}_q F_n$ lying above places in $S := \{\mathfrak{p}, \infty\}$.

Definition (Stickelberger series)

Let $\mathcal{F}_S = be$ the maximal pro-p-extension of F unramified outside S. The Stickelberger series is defined as

$$\Theta_S(X) := \prod_{v \notin S} (1 - \operatorname{Fr}_v^{-1} X^{d_v})^{-1} \in \mathbb{Z}[[\operatorname{Gal}(\mathfrak{F}_S/F)]][[X]] ,$$

where Fr_v is the (lifting of the) Frobenius of v in $\operatorname{Gal}(\mathfrak{F}_S/F)$. Moreover, for any n, we put $\Theta_n(X)$ for the projection of $\Theta_S(X)$ in $\mathbb{Z}[\operatorname{Gal}(F_n/F)][[X]]$.

Theorem (Greither-Popescu IMRN '12 Theorem 4.3)

$$\operatorname{Fitt}_{\mathbb{Z}_p[G_n][[G_{\mathbb{F}_q}]]}(T_p(\mathfrak{M}_{S,n})) = (\Theta_n(\gamma^{-1})).$$

Fitting ideals: class groups

Let χ be a character of $\Delta:=\operatorname{Gal}(F_0/F)$ with values in the Witt ring $W\simeq \mathbb{Z}_p[\mu_{q^d-1}]$: we say that χ is **even** is $\chi(\mathbb{F}_q^*)=1$ and **odd** otherwise. Denote the trivial character by χ_0 . From now on we work on χ -parts of modules M, denoted $M(\chi)$.

Computing the Fitting ideal of $T_p(F_n)(\chi)$ and specializing γ^{-1} to 1 one gets

Proposition (Anglés-B-Bars-Longhi (ABBL) '15)

$$\operatorname{Fitt}_{W[\Gamma_n]}(\operatorname{\mathcal{C}\!\ell}^0(F_n)(\chi)) := \left\{ \begin{array}{ll} (\Theta_n(1,\chi)) & \text{if } \chi \text{ is odd} \\ \\ \left(\frac{\Theta_n(X,\chi)}{1-X}|_{X=1}\right) & \text{if } \chi \neq \chi_0 \text{ is even} \end{array} \right.$$

$$\operatorname{Fitt}_{W[\Gamma_n]}(\operatorname{\mathcal{C}\!\ell}^0(F_n)^\vee(\chi_0)) = \frac{\Theta_n(X,\chi_0)}{1-X}|_{X=1}\left(1,\frac{n(\Gamma_n)}{d}\right)$$

where
$$\Gamma_n := \operatorname{Gal}(F_n/F_0)$$
 and $n(\Gamma_n) := \sum_{g \in \Gamma_n} g$.

Remark

The ramified prime ∞ causes the 1-X for even characters.

The ramified prime \mathfrak{p} causes the extra factor for $\chi = \chi_0$.

Main (algebraic) theorem

Let $\mathfrak{C}\ell^{\,0}(\mathfrak{F}) := \lim_{\stackrel{\longleftarrow}{n}} \mathfrak{C}\ell^{\,0}(F_n)$ (limit on the norm maps).

Studying kernels and cokernels of the natural norm and inclusion maps between $\mathcal{C}\ell^0(F_n)$ and $\mathcal{C}\ell^0(F_{n-1})$ (in particular norms are surjective and their kernels are gived by augmentation ideals), one verifies that the system of Fitting ideals is coherent with espect to norms.

Theorem (ABBL '15)

$$\operatorname{Fitt}_{W[[\Gamma]]}(\operatorname{\mathcal{C}\!\ell}^0(\mathcal{F})(\chi)) = \varprojlim_n \left(\Theta_n^\#(1,\chi)\right) := \left(\Theta_\infty^\#(1,\chi)\right) \quad \text{ for } \chi \neq \chi_0$$

with

$$\Theta_n^\#(1,\chi) := \left\{ \begin{array}{ll} \Theta_n(1,\chi) & \text{if } \chi \text{ is odd} \\ \\ \frac{\Theta_n(X,\chi)}{1-X}|_{X=1} & \text{if } \chi \neq \chi_0 \text{ is even} \end{array} \right. .$$

Goss-Carlitz ζ -function

Let

- A_+ (resp. $A_{+,n}$) denote the set of monic polynomials of A (resp. monic polynomials of degree n);
- $F_{\infty} = \mathbb{F}_q((\theta^{-1}))$ the completion of F at ∞ and $\overline{F_{\infty}}$ its algebraic closure;
- $\mathbb{C}_{\infty} := \widehat{\overline{F_{\infty}}}$ the completion of $\overline{F_{\infty}}$ at the prime dividing ∞ ;
- $\mathbb{S}_{\infty} := \mathbb{C}_{\infty}^* \times \mathbb{Z}_p$.

Definition (Goss-Carlitz ζ -function)

The Goss-Carlitz ζ -function is defined as

$$\zeta_A(s) := \sum_{a \in A_+} a^{-s} = \sum_{n \geq 0} \left(\sum_{a \in A_+, n} \langle a \rangle_{\infty}^{-y} \right) x^{-n} \quad , \ s = (x, y) \in \mathbb{S}_{\infty} \ ,$$

where

$$a^s = x^{\deg(a)} \langle a \rangle_{\infty}^y \text{ and } \langle a \rangle_{\infty} := \frac{a}{\theta^{\deg(a)} sgn(a)} = 1 + \text{ pws of } \frac{1}{\theta} \in \mathbb{F}\left[\frac{1}{\theta}\right]$$

and sgn(a) is the leading coefficient of a.

Stickelberger and $\zeta_A(s)$: interpolation

Let $\mathbb{S}_{\infty}^+:=\{(x,y)\in\mathbb{S}_{\infty}\,:\,|x|>1\}$ be our "half-plane" ($\sim\mathbb{C}^+=\{z\in\mathbb{C}\,:\,Re(z)>1\}$). Then

- since $a^s = x^{\deg(a)} \langle a \rangle_{\infty}^y$, one has $|a^{-s}| = |x|^{-\deg(a)}$ and $\zeta_A(s)$ converges on \mathbb{S}_{∞}^+ ;
- an element $s=(x,y)\in\mathbb{S}_{\infty}$ defines a principal quasi-character

$$\varphi_s: \mathbb{I}_F/F^* \simeq \mathbb{Z} \times U_1(\infty) \times \prod_{v \neq \infty} A_v^* \longrightarrow \mathbb{C}_{\infty}^*$$

$$(n,\alpha_1,\prod\alpha_v)\stackrel{\varphi_s}{\longrightarrow} x^{-n}\alpha_1^y;$$

• for any $y \in \mathbb{Z}_p$ consider the map

$$\psi_y : \operatorname{Gal}(\mathfrak{F}_S/F) \stackrel{cls \ field}{\to} U_1(\infty) \stackrel{(id,y)}{\hookrightarrow} \mathbb{S}_{\infty} \stackrel{a \mapsto a^s}{\longrightarrow} \mathbb{C}_{\infty}^*$$
.

For any $v \notin S$ one has $\psi_y(\operatorname{Fr}_v^{-1}) = \langle \pi_v \rangle_{\infty}^y$ (where π_v is the monic generator of the prime ideal v) and $\psi_y(\Theta_S)(x)$ converges for any $|x| \ge 1$.

Theorem (Stickelberger $\leftrightarrow \zeta_A$, ABBL '15)

For any $s = (x, y) \in \mathbb{S}_{\infty}^+$,

$$\psi_{-y}(\Theta_S)(x^{-1}) = (1 - \pi_{\mathfrak{p}}^{-s})\zeta_A(s)$$
.

Stickelberger and $\zeta_A(s)$: convergence

Remarks

• The proof of the previous theorem uses the Euler product formula

$$\zeta_A(s) = \prod_{v \neq \infty} (1 - \pi_v^{-s})^{-1} .$$

- By the properties of the Stickelberger element, the previous theorem can be used to ensure the convergence of ζ_A on the border of the disc $|x| \ge 1$.
- One can prove that

$$v_{\infty}\left(\sum_{a\in A_{+,n}}\langle a\rangle_{\infty}^{y}\right)\geqslant p^{n-1}$$

for any $y \in \mathbb{Z}_p$ and any $n \geqslant 1$, thus ensuring the convergence of ζ_A on the whole \mathbb{S}_{∞} .

The last remark is particularly relevant because we are interested in the values of ζ_A at negative integers, i.e.,

$$\zeta_A(-j) := \zeta_A(\theta^{-j}, -j) \quad j \in \mathbb{N} - \{0\}$$

(note that $v_{\infty}(\theta^{-j}) = -j$ and $|\theta^{-j}| = |1/\theta|^j \leq 1$).

Special values of $\zeta_A(s)$

For any $j \in \mathbb{Z}$ and $n \in \mathbb{N}$ let

$$S_n(j) := \sum_{a \in A_+, n} a^j \in A$$
 and $Z(X, j) := \sum_{n \geqslant 0} S_n(j) X^n \in A[X]$.

Then $\zeta_A(-j) := \zeta_A(\theta^{-j}, -j) = Z(1, j)$ and it has **trivial zeroes** at **even** integers, i.e.,

$$\zeta_A(-j) = Z(1,j) = 0$$
 for $j \ge 1$, $j \equiv 0 \pmod{q-1}$.

Definition (Bernoulli-Goss numbers)

For any $j \in \mathbb{N}$, the Bernoulli-Goss numbers $\beta(j)$ are defined as

$$\beta(j) := \left\{ \begin{array}{ll} Z(1,j) & \text{if } j = 0 \text{ or } j \not\equiv 0 \pmod{q-1} \\ -\frac{d}{dX} Z(X,j)_{|X=1} & \text{if } j \geq 1 \text{ and } j \equiv 0 \pmod{q-1} \end{array} \right.$$

Lemma

For all $j \ge 0$, we have $\beta(j) \equiv 1 \pmod{\theta^q - \theta}$. In particular $\beta(j) \ne 0$.

p-adic *L*-function

The characters of $\Delta = \operatorname{Gal}(F_0/F)$ are powers of the Teichmüller $\omega_{\mathfrak{p}}$ (values in $A_{\mathfrak{p}}$)

$$a = \omega_{\mathfrak{p}}(a)\langle a\rangle_{\mathfrak{p}}$$
 with $a \equiv \omega_{\mathfrak{p}}(a) \pmod{\mathfrak{p}}$ and $\langle a\rangle_{\mathfrak{p}} \in U_1$.

Let $\widetilde{\omega}_{\mathfrak{p}}$ be the composition of $\omega_{\mathfrak{p}}$ with the cyclotomic character (with values in W^*).

Definition (p-adic L-function)

For any $0 \le i \le q^d - 2$ and any $y \in \mathbb{Z}_p$, the \mathfrak{p} -adic L-function is defined as

$$L_{\mathfrak{p}}(X,y,\omega_{\mathfrak{p}}^{i}) := \sum_{n \geq 0} \left(\sum_{a \in A_{+,n}, \ \mathfrak{p} \nmid (a)} \omega_{\mathfrak{p}}^{i}(a) \langle a \rangle_{\mathfrak{p}}^{y} \right) X^{n} \in A_{\mathfrak{p}}[[X]] \ .$$

Remarks

- By estimating the p-adic valuation of the coefficients of X^n one sees that it converges on $\mathbb{S}_{\mathfrak{p}} := \mathbb{C}_{\mathfrak{p}}^* \times \mathbb{Z}_p \times \mathbb{Z}/(q^d-1)$ (which is the analogue of the previous \mathbb{S}_{∞}).
- Another (almost unexplored) analogy: the space $\mathbb{S}_{\mathfrak{p}}$ can be interpreted as the set of principal quasi-characters on \mathbb{I}_F/F^* with values in $\mathbb{C}_{\mathfrak{p}}^*$.

$L_{\mathfrak{p}}$ and ζ_A : interpolation

Proposition $(L_{\mathfrak{p}} \leftrightarrow \zeta_A, ABBL '15)$

Let $0 \leqslant i \leqslant q^d - 2$, $j \equiv i \pmod{q^d - 1}$, $y \in \mathbb{Z}_p$ and $\mathfrak{p} = (\pi_{\mathfrak{p}})$. Then

$$(1) \quad L_{\mathfrak{p}}(X,j,\omega^{i}_{\mathfrak{p}}) = (1-\pi^{j}_{\mathfrak{p}}X^{d})Z(X,j) \in A[X] \quad \text{and} \quad L_{\mathfrak{p}}(X,y,\omega^{i}_{\mathfrak{p}}) \equiv Z(X,i) \pmod{\mathfrak{p}} \ .$$

- (20) $L_{\mathfrak{p}}(1,j,\omega_{\mathfrak{p}}^{i}) = (1-\pi_{\mathfrak{p}}^{j})\beta(j)$, $i \not\equiv 0 \pmod{q-1}$
- $\frac{d}{dX} L_{\mathfrak{p}}(X, j, \omega_{\mathfrak{p}}^{i})|_{X=1} = -(1 \pi_{\mathfrak{p}}^{j})\beta(j) \ , \ j \ge 1, \ i \equiv 0 \pmod{q-1} \ .$

The proof is easier if one consider the Euler product formula of the two functions. The one for $L_{\mathfrak{p}}$ is

$$L_{\mathfrak{p}}(X, y, \omega_{\mathfrak{p}}^{i}) = \prod_{v \in S} (1 - \omega_{\mathfrak{p}}^{i}(\pi_{v}) \langle \pi_{v} \rangle_{\mathfrak{p}}^{y} X^{\deg(v)})^{-1}.$$

Stickelberger and $L_{\mathfrak{p}}$: Iwasawa Main Conjecture

For any $s = (1, y, i) \in \mathbb{S}_{\mathfrak{p}}$, consider the map

$$\xi_s : \operatorname{Gal}(\mathfrak{F}_S/F) \xrightarrow{res} \operatorname{Gal}(\mathfrak{F}/F) \xrightarrow{\kappa} A_{\mathfrak{p}}^* \hookrightarrow \mathbb{S}_{\mathfrak{p}} \xrightarrow{a \mapsto a^s} \mathbb{C}_{\mathfrak{p}}^*$$
.

Theorem (Stickelberger $\leftrightarrow L_{\mathfrak{p}}$, ABBL '15)

For any $s = (1, y, i) \in \mathbb{S}_{p}$ one has

$$\xi_{-s}(\Theta_S)(X) = L_{\mathfrak{p}}(X, y, \omega_{\mathfrak{p}}^i)$$
.

Note that the left hand side lives in characteristic 0 and the right hand side in characteristic p. This is more evident in the following equivalent statement.

Theorem (Stickelberger $\leftrightarrow L_{\mathfrak{p}}$, Sinnott '08 + ABBL '15)

Let $0 \le i \le q^d - 2$; for any $y \in \mathbb{Z}_p$, the homomorphism $\gamma \mapsto \kappa(\gamma)^y$ induces a map $s_X : (W[[\Gamma]]/p)[[X]] \to C^0(\mathbb{Z}_p, A_\mathfrak{p})$ such that

$$s_X(\Theta_\infty(X,\widetilde{\omega}_{\mathfrak{p}}^{-i}))(y) = L_{\mathfrak{p}}(X,-y,\omega_{\mathfrak{p}}^i)$$
.

Remark

Specializing at X=1 the left hand side provides the Fitting ideal of the Iwasawa module $\mathcal{C}\ell^0(\mathcal{F})$, the right hand side interpolates (via Z(X,i)) the values of Goss ζ -function.

Ferrero-Washington theorem

Theorem ($\mu = 0$, ABBL '15)

For any $1 \le i \le q^d - 2$ (i.e. $\omega_{\mathfrak{p}}^i \ne \chi_0$), one has $\Theta_{\infty}^{\#}(1, \widetilde{\omega}_{\mathfrak{p}}^i) \not\equiv 0 \pmod{p}$.

Proof.

- $\beta(j) \neq 0$ and interpolation property (2);
- $L_{\mathfrak{p}}(1, j, \omega_{\mathfrak{p}}^{i}) \neq 0$ for $j \not\equiv 0 \pmod{q-1}$;
- $\frac{d}{dX}L_{\mathfrak{p}}(X,j,\omega_{\mathfrak{p}}^{i})|_{X=1}\neq 0 \text{ for } j\geq 1, \ j\equiv 0 \pmod{q-1};$
- $s_X(\Theta_{\infty}^{\#}(1,\widetilde{\omega}_{\mathfrak{p}}^i))(-j) \neq 0$ and s injective on $W[[\Gamma]]/pW[[\Gamma]]$.

Since $\Theta_{\infty}^{\#}(1,\widetilde{\omega}_{\mathfrak{p}}^{i})$ is the limit of the $\Theta_{n}^{\#}(1,\widetilde{\omega}_{\mathfrak{p}}^{i})$ we can define

$$N_{\mathfrak{p}}(i) := \operatorname{Inf} \left\{ n \geqslant 0 \ : \ \Theta_n^{\#}(1, \widetilde{\omega}_{\mathfrak{p}}^i) \neq 0 \pmod{p} \right\} \ .$$

Bernoulli-Goss numbers

Theorem (Arithmetic properties of B-G numbers, ABBL '15)

Let $1 \leq i \leq q^d - 2$, then

$$N_{\mathfrak{p}}(i) \leqslant \operatorname{Inf}\{v_{\mathfrak{p}}(\beta(j)) : j \equiv -i \pmod{q^d - 1}\}$$
.

Proof.

• Let $1 \le i \le q^d - 2$ and put

$$m_{\mathfrak{p}}(i) := \left\{ \begin{array}{cc} \operatorname{Inf} \left\{ v_{\mathfrak{p}}(L_{\mathfrak{p}}(1,y,\omega_{\mathfrak{p}}^{i})) \ : \ y \in \mathbb{Z}_{p} \right. \right\} & \text{for } i \not\equiv 0 \pmod{q-1} \\ \\ \operatorname{Inf} \left\{ v_{\mathfrak{p}} \left(\frac{d}{dX} L_{\mathfrak{p}}(X,y,\omega_{\mathfrak{p}}^{i})_{|X=1} \right) \ : \ y \in \mathbb{Z}_{p} \right. \right\} & \text{for } i \equiv 0 \pmod{q-1} \end{array} \right.$$

- Interpolation property (2) $\Longrightarrow m_{\mathfrak{p}}(i) = \operatorname{Inf} \left\{ v_{\mathfrak{p}}(\beta(j)) : j \geq 1, j \equiv i \pmod{q^d 1} \right\}.$
- Using the link with MC

$$N_{\mathfrak{p}}(i) \leqslant m_{\mathfrak{p}}(-i) = \operatorname{Inf}\{v_{\mathfrak{p}}(\beta(j)) : j \equiv -i \pmod{q^d - 1}\}.$$

Bibliography

- ANGLÉS B. BARS LONGHI, Iwasawa Main Conjecture for the Carlitz cyclotomic extension and applications, arXiv:1412.5957 [math.NT] (2015).
- B. Bars Longhi, Aspects of Iwasawa theory over function fields, arXiv:1005.2289 [math.NT] (2010), to appear in the EMS Congress Reports.
- B. Bars Longhi, Characteristic ideals and Iwasawa theory, New York J. Math. 20 (2014), 759–778.
- Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik 35, Springer-Verlag, Berlin, 1996.
- Greither Popescu, The Galois module structure of ℓ -adic realizations of Picard 1-motives and applications, Int. Math. Res. Not. (2012), no. 5, 986–1036.
- Greither Popescu, Fitting ideals of ℓ -adic realizations of Picard 1-motives and class groups of global function fields, J. Reine Angew. Math. 675 (2013), 223–247.
- Sinnott, Dirichelet series in function fields, J. Number Theory 128 (2008), 1893–1899.