Iwasawa Main Conjecture in cyclotomic function fields

Andrea Bandini (Parma)

Joint work with : Bruno Anglés (Caen)
Francesc Bars (UAB - Barcelona)
Ignazio Longhi (Xi'an Jiaotong - Liverpool)

Cyclotomic extensions: number fields

For any $n \in \mathbb{N}$ and p an odd prime, let

- $\mathbb{Q}_{n}:=\mathbb{Q}\left(\boldsymbol{\mu}_{p^{n+1}}\right)$

$$
\mathbb{Q} \stackrel{p-1}{\subset} \mathbb{Q}_{0} \stackrel{p}{\subset} \mathbb{Q}_{1} \stackrel{p}{\subset} \cdots \subset \mathbb{Q}_{n} \subset \cdots \subset \bigcup \mathbb{Q}\left(\boldsymbol{\mu}_{p^{n}}\right)=\mathbb{Q}\left(\boldsymbol{\mu}_{p^{\infty}}\right) .
$$

- $\mathbb{Q}_{c y c}:=\bigcup \mathbb{Q}_{n}$ the p-cyclotomic extension of \mathbb{Q}.

Properties

1. $\operatorname{Gal}\left(\mathbb{Q}_{\text {cyc }} / \mathbb{Q}\right) \simeq \underset{{ }_{n}}{\lim _{\leftarrow}} \operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right) \simeq \underset{{ }_{n}}{\lim _{\leftarrow}}\left(\mathbb{Z} / p^{n+1}\right)^{*} \simeq \mathbb{Z} /(p-1) \times \mathbb{Z}_{p}$.
2. ramified only at ∞ and p, in particular $\mathbb{Q}_{c y c} / \mathbb{Q}_{0}$ is ramified (totally) only at p. $\mathbb{Q}_{c y c}^{\mathrm{Gal}\left(\mathbb{Q}_{0} / \mathbb{Q}\right)}$ is called the cyclotomic \mathbb{Z}_{p}-extension of \mathbb{Q}.
For any number field $K, K \mathbb{Q}_{c y c}^{\mathrm{Gal}\left(\mathbb{Q}_{0} / \mathbb{Q}\right)}$ is the cyclotomic \mathbb{Z}_{p}-extension of K. The Iwasawa algebra is the ring

$$
\Lambda:={\underset{\hbar}{\leftarrow}}_{\lim _{n}}^{\mathbb{Z}_{p}}\left[\operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}_{0}\right)\right]=\mathbb{Z}_{p}\left[\left[\operatorname{Gal}\left(\mathbb{Q}_{c y c} / \mathbb{Q}_{0}\right)\right]\right] \simeq \mathbb{Z}_{p}[[T]]
$$

The last isomorphism is non-canonical and given by $\gamma \mapsto T-1$ where γ is a chosen topological generator of $\operatorname{Gal}\left(\mathbb{Q}_{c y c} / \mathbb{Q}_{0}\right)$.

Cyclotomic extensions: function fields

- $F:=\mathbb{F}_{q}(\theta)$ with $q=p^{r} \geqslant 3$ and fix $\frac{1}{\theta}$ as the prime at ∞.
- Let $A:=\mathbb{F}_{q}[\theta]$ and fix a prime \mathfrak{p} of A of degree d.
- Let Φ be the Carlitz module associated to A : it is an \mathbb{F}_{q}-linear ring homomorphism

$$
\begin{gathered}
\Phi: A \rightarrow F\{\tau\} \\
\theta \mapsto \Phi_{\theta}=\theta \tau^{0}+\tau \\
\theta^{2} \mapsto \Phi_{\theta^{2}}=\left(\theta \tau^{0}+\tau\right)\left(\theta \tau^{0}+\tau\right)=\theta^{2} \tau^{0}+\theta \tau+\tau \theta+\tau^{2}=\theta^{2} \tau^{0}+\left(\theta+\theta^{q}\right) \tau+\tau^{2},
\end{gathered}
$$

where $F\{\tau\}$ is the skew polynomial ring with $\tau f=f^{q} \tau$ for any $f \in F$.

- For any ideal \mathfrak{a} of A write

$$
\Phi[\mathfrak{a}]:=\left\{x \in \bar{F} \mid \Phi_{a}(x)=0 \forall a \in \mathfrak{a}\right\},
$$

it is an A-module isomorphic to A / \mathfrak{a} and such that $\operatorname{Gal}(F(\Phi[\mathfrak{a}]) / F) \simeq(A / \mathfrak{a})^{*}$.
Example: $\Phi[(\theta)] \simeq \mathbb{F}_{q}$, indeed

$$
\Phi_{\theta}(a)=\theta a+a^{q}=0 \Longleftrightarrow a=0 \text { or } a^{q-1}=-\theta .
$$

Moreover $F(\Phi[(\theta)])=F(\sqrt[q-1]{-\theta})$ and $\mu_{q-1} \subset \mathbb{F}_{q}$, so $\operatorname{Gal}(F(\Phi[(\theta)]) / F) \simeq \mathbb{F}_{q}^{*}$.

Cyclotomic extensions: function fields

For any $n \in \mathbb{N}$, let

- $F_{n}:=F\left(\Phi\left[\mathfrak{p}^{n+1}\right]\right)$

$$
F \subset F_{0} \subset F_{1} \subset \cdots \subset F_{n} \subset \cdots \subset \bigcup F\left(\Phi\left[\mathfrak{p}^{n}\right]\right)=F\left(\Phi\left[\mathfrak{p}^{\infty}\right]\right)
$$

- $\mathcal{F}:=\bigcup F_{n}$ the \mathfrak{p}-cyclotomic extension of F.

Properties
1.

$$
\begin{aligned}
\operatorname{Gal}(\mathcal{F} / F) & \simeq \underset{{ }_{n}}{\lim _{\hookleftarrow}} \operatorname{Gal}\left(F_{n} / F\right) \simeq \underset{\lim _{\leftarrow}}{ }\left(A / \mathfrak{p}^{n+1}\right)^{*} \\
& \simeq \operatorname{Gal}\left(F_{0} / F\right) \times \operatorname{Gal}\left(\mathcal{F} / F_{0}\right) \simeq \mathbb{Z} /\left(q^{d}-1\right) \times \mathbb{Z}_{p}^{\infty}:=\Delta \times \Gamma
\end{aligned}
$$

2. ramified only at ∞ and \mathfrak{p}, in particular \mathcal{F} / F_{0} is ramified (totally) only at \mathfrak{p} and the inertia group of ∞ is $\mathbb{F}_{q}^{*} \hookrightarrow \Delta$ (note $|\Delta|=q^{\operatorname{deg}(\mathfrak{p})}-1=q^{d}-1$).
The extension \mathcal{F}^{Δ} / F is a \mathbb{Z}_{p}^{∞}-extension of F cyclotomic at \mathfrak{p}.
The Iwasawa algebra is the ring

$$
\Lambda:=\underset{{ }_{n}}{\lim _{\sim}} \mathbb{Z}_{p}\left[\operatorname{Gal}\left(F_{n} / F_{0}\right)\right]=\mathbb{Z}_{p}[[\Gamma]] \simeq \mathbb{Z}_{p}\left[\left[T_{n}: n \in \mathbb{N}\right]\right]
$$

Iwasawa modules: global fields

F a global field and E / F a finite extension

- $\mathcal{C} \ell^{0}(E)$ the p-part of the group of divisor classes of E of degree 0 (class group);
- $L(E)$ the maximal unramified abelian p-extension of E (totally split at ∞);
- $\mathcal{C} \ell^{0}(E) \simeq \operatorname{Gal}(L(E) / E)$ via the (canonical) Artin map.

Same notations for infinite extensions \mathcal{E} / F where

$$
\Lambda(\mathcal{E}):=\mathbb{Z}_{p}[[\operatorname{Gal}(\mathcal{E} / F)]] \quad \text { and } \quad \mathcal{C} \ell^{0}(\mathcal{E}):=\underset{E}{\lim _{E}} \mathcal{C} \ell^{0}(E)
$$

(the limit is on the natural norm maps as E runs among the finite subextensions of \mathcal{E} / F).

$$
\mathcal{C} \ell^{0}(\mathcal{E}) \triangleleft \operatorname{Gal}(L(\varepsilon) / F)
$$

(a lift of) $\operatorname{Gal}(\mathcal{E} / F)$ acts on $\mathcal{C} \ell^{0}(\mathcal{E})$ via conjugation

$$
\mathcal{C} \ell^{0}(\varepsilon) \text { is a } \Lambda(\varepsilon)-\text { module }
$$

Iwasawa modules: global fields

Theorem (Iwasawa 60's, Greenberg 70's....)

Let \mathcal{E} / F be a \mathbb{Z}_{p}^{d}-extension $(d<\infty)$, then $\mathcal{C} \ell^{0}(\mathcal{E})$ is a finitely generated torsion $\Lambda(\mathcal{E})$-module.

A f.g.t. $\Lambda(\mathcal{E})$-module N is pseudo-null if $h t\left(A n n_{\Lambda(\mathcal{E})}(N)\right) \geqslant 2$ (i.e., N has at least 2 relatively prime annihilators).

Theorem (Structure Theorem for f.g.t. Iwasawa modules)

For any f.g.t. $\Lambda(\mathcal{E})$-module M there is a pseudo-isomorphism (i.e. with pseudo-null kernel and cokernel)

$$
M \sim_{\Lambda(\varepsilon)} \bigoplus_{i=1}^{s} \Lambda(\varepsilon) /\left(f_{i}^{e_{i}}\right) \quad \text { i.e. } \quad \bigoplus_{i=1}^{s} \Lambda(\varepsilon) /\left(f_{i}^{e_{i}}\right) \hookrightarrow M \rightarrow N
$$

where the f_{i} are irreducible elements of $\Lambda(\mathcal{E}) \simeq \mathbb{Z}_{p}\left[\left[T_{1}, \ldots, T_{d}\right]\right], f_{i}, e_{i}$ and s are uniquely determined by M and N is pseudo-null.

Iwasawa modules: characteristic ideals

Definition (Characteristic ideal)

For a f.g.t module as above we define the characteristic ideal as

$$
C h_{\Lambda(\varepsilon)}(M):=\left(\prod_{i=1}^{s} f_{i}^{e_{i}}\right)
$$

A f.g.t. $\Lambda(\varepsilon)$-module N is pseudo-null (i.e. $\left.N \sim_{\Lambda(\varepsilon)} 0\right) \Longleftrightarrow C h_{\Lambda(\varepsilon)}(N)=(1)$.

Theorem (Iwasawa)

Let K_{∞} / K be a \mathbb{Z}_{p}-extension of a number field K and and let $f_{K_{\infty}}$ be a (polynomial) generator of $C h_{\Lambda\left(K_{\infty}\right)}\left(\mathrm{C} \ell^{0}\left(K_{\infty}\right)\right)$. Let

- μ such that $p^{\mu} \mid f_{K_{\infty}}$ and $p^{\mu+1} \nmid f_{K_{\infty}}$;
- $\lambda=\operatorname{deg}\left(f_{K_{\infty}}\right)$.

Then

$$
\left|C \ell^{0}\left(K_{n}\right)\right|=p^{\mu p^{n}+\lambda n+O(1)} \quad \forall n \gg 0 .
$$

ζ-functions and L-functions (sketch)

Cyclotomic extension of \mathbb{Q}

Let Δ be the group of Dirichelet characters of the number field $\mathbb{Q}\left(\boldsymbol{\mu}_{p}\right)$, then

$$
\zeta_{\mathbb{Q}\left(\boldsymbol{\mu}_{p}\right)}(s)=\sum_{I \neq 0} N_{\mathbb{Q}\left(\boldsymbol{\mu}_{p}\right) / \mathbb{Q}}(I)^{-s}=\prod_{\chi \in \Delta}\left(\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}\right)=\prod_{\chi \in \Delta} L(s, \chi) .
$$

The special value in $s=1$ is related to the class number and other arithmetically relevant information on the field $\mathbb{Q}\left(\boldsymbol{\mu}_{p}\right)$.

- $\Delta \simeq \operatorname{Gal}\left(\mathbb{Q}\left(\boldsymbol{\mu}_{p}\right) / \mathbb{Q}\right)$ is cyclic generated by the Teichmüller character ω $\left(\operatorname{recall} \omega(a) \equiv a\left(\bmod \left(1-\zeta_{p}\right)\right)\right)$.
- For characters ω^{i} (i even and nonzero) Iwasawa defined a p-adic L-function $L_{p}\left(s, \omega^{i}\right)$ which interpolates the special values of $L\left(s, \omega^{i}\right)$.
- Iwasawa proved that there exist power series $f\left(T, \omega^{i}\right) \in \mathbb{Z}_{p}[[T]] \simeq \Lambda\left(\mathbb{Q}_{c y c}\right)$ such that

$$
L_{p}\left(s, \omega^{i}\right)=f\left((1+p)^{s}-1, \omega^{i}\right) .
$$

Nowadays many generalizations are known: a similar procedure works for any number field and some of its \mathbb{Z}_{p}-extensions (the ones with more relevant arithmetical meaning).

Main Conjecture

Consequences/related results:

- special values of ζ-functions;
- arithmetic properties of (generalized) Bernoulli numbers;
- vanishing of the μ-invariant for cyclotomic extensions $K_{c y c} / K$, i.e., the p-adic L-function is nonzero modulo p (Ferrero-Washington theorem when K / \mathbb{Q} is abelian).
Function field setting:
- Analytic side analogues of ζ-functions, Bernoulli numbers and so on (mainly due to Carlitz and Goss);
- Algebraic side arithmetic \mathbb{Z}_{p}-extension, geometric \mathbb{Z}_{p}^{d}-extensions, no arithmetic informations on \mathbb{Z}_{p}^{∞}-extensions.

Main Conjecture and BSD

Let E be an elliptic curve (defined over \mathbb{Q}) and consider the exact sequence

$$
E(\mathbb{Q}) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \hookrightarrow \operatorname{Sel}(E / \mathbb{Q})_{p} \rightarrow \amalg(E / \mathbb{Q})\left[p^{\infty}\right]
$$

and the L-function $L(E, s)$ associated to E.

BSD Conjecture

$$
\operatorname{ord}_{s=1} L(E, s)=\operatorname{rk}_{\mathbb{Z}}(E(\mathbb{Q}))+\amalg(E / \mathbb{Q}) \text { is finite }+ \text { much more } .
$$

Actually this is the most used strategy to produce results on BSD (Kato, Bertolini-Darmon, Skinner-Urban,...).

Fitting ideals: Greither-Popescu IMRN '12 and Crelle '13

Let \mathcal{F} / F be the \mathfrak{p}-cyclotomic extension of $F=\mathbb{F}_{q}(\theta)$ with $\operatorname{Gal}\left(F_{0} / F\right)=: \Delta, \operatorname{Gal}\left(\mathcal{F} / F_{0}\right)=: \Gamma$ and (non-noetherian) Iwasawa algebra $\Lambda(\mathcal{F})$. Let $\mathcal{C} \ell^{0}(\mathcal{F})$ be the Iwasawa module of \mathcal{F}. We do not have a structure theorem for $\Lambda(\mathcal{F})$-modules (hence no characteristic ideal), so we compute Fitting ideals for the class groups of $F_{n}=F\left(\Phi\left[\mathfrak{p}^{n+1}\right]\right)$ in the group ring $\mathbb{Z}_{p}\left[\operatorname{Gal}\left(F_{n} / F\right)\right]$.

Definition (Fitting ideal)

Let M be a f.g. R-module. The Fitting ideal of M over $R, \operatorname{Fitt}_{R}(M)$ is the ideal of R
generated by the determinants of all the (minors of the) matrices of relations for a fixed set of generators of M.

Let $\overline{\mathbb{F}}_{q}$ be a fixed algebraic closure of \mathbb{F}_{q} and fix a topological generator γ for $G_{\mathbb{F}_{q}}:=\operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$ (the arithmetic Frobenius).
Denote by

$$
T_{p}(L):=T_{p}\left(\operatorname{Jac}\left(X_{L}\right)\left(\overline{\mathbb{F}}_{q}\right)\right) .
$$

the p-adic Tate module of the $\overline{\mathbb{F}}_{q}$-rational points of the Jacobian of the curve X_{L} associated with the field L.

Lemma

$$
\mathfrak{C} \ell^{0}\left(F_{n}\right) \simeq T_{p}\left(F_{n}\right) /\left(1-\gamma^{-1}\right) T_{p}\left(F_{n}\right)=: T_{p}\left(F_{n}\right)_{G_{\mathbb{F}_{q}}} .
$$

Fitting ideals: Greither-Popescu IMRN '12 and Crelle '13

The module $T_{p}\left(F_{n}\right)$ fits into the exact sequence

$$
T_{p}\left(F_{n}\right) \hookrightarrow T_{p}\left(\mathcal{M}_{S, n}\right) \rightarrow L_{n}
$$

where $T_{p}\left(\mathcal{M}_{S, n}\right)$ is the p-adic realization of a motive \mathcal{M}_{S} (defined via divisors), L_{n} is the kernel of the degree map $\mathbb{Z}_{p}\left[\overline{\mathbb{F}}_{q} F_{n}(S)\right] \longrightarrow \mathbb{Z}_{p}$ and $\overline{\mathbb{F}}_{q} F_{n}(S)$ is the set of places of $\overline{\mathbb{F}}_{q} F_{n}$ lying above places in $S:=\{\mathfrak{p}, \infty\}$.

Definition (Stickelberger series)

Let $\mathcal{F}_{S}=$ be the maximal pro-p-extension of F unramified outside S. The Stickelberger series is defined as

$$
\Theta_{S}(X):=\prod_{v \notin S}\left(1-\operatorname{Fr}_{v}^{-1} X^{d_{v}}\right)^{-1} \in \mathbb{Z}\left[\left[\operatorname{Gal}\left(\mathcal{F}_{S} / F\right)\right]\right][[X]]
$$

where Fr_{v} is the (lifting of the) Frobenius of v in $\operatorname{Gal}\left(\mathcal{F}_{S} / F\right)$. Moreover, for any n, we put $\Theta_{n}(X)$ for the projection of $\Theta_{S}(X)$ in $\mathbb{Z}\left[\operatorname{Gal}\left(F_{n} / F\right)\right][[X]]$.

Theorem (Greither-Popescu $I M R N$ '12 Theorem 4.3)

$$
\operatorname{Fitt}_{\mathbb{Z}_{p}\left[G_{n}\right]\left[\left[G_{\mathbb{F}_{q}}\right]\right]}\left(T_{p}\left(\mathcal{M}_{S, n}\right)\right)=\left(\Theta_{n}\left(\gamma^{-1}\right)\right)
$$

Fitting ideals: class groups

Let χ be a character of $\Delta:=\operatorname{Gal}\left(F_{0} / F\right)$ with values in the Witt ring $W \simeq \mathbb{Z}_{p}\left[\boldsymbol{\mu}_{q^{d}-1}\right]$: we say that χ is even is $\chi\left(\mathbb{F}_{q}^{*}\right)=1$ and odd otherwise. Denote the trivial character by χ_{0}.
From now on we work on χ-parts of modules M, denoted $M(\chi)$.
Computing the Fitting ideal of $T_{p}\left(F_{n}\right)(\chi)$ and specializing γ^{-1} to 1 one gets

Proposition (Anglés-B-Bars-Longhi (ABBL) '15)

$$
\begin{aligned}
& \operatorname{Fitt}_{W\left[\Gamma_{n}\right]}\left(C \ell^{0}\left(F_{n}\right)(\chi)\right):= \begin{cases}\left(\Theta_{n}(1, \chi)\right) & \text { if } \chi \text { is odd } \\
\left(\left.\frac{\Theta_{n}(X, \chi)}{1-X}\right|_{X=1}\right) & \text { if } \chi \neq \chi_{0} \text { is even }\end{cases} \\
& \operatorname{Fitt}_{W\left[\Gamma_{n}\right]}\left(C \ell^{0}\left(F_{n}\right)^{\vee}\left(\chi_{0}\right)\right)=\left.\frac{\Theta_{n}\left(X, \chi_{0}\right)}{1-X}\right|_{X=1}\left(1, \frac{n\left(\Gamma_{n}\right)}{d}\right)
\end{aligned}
$$

where $\Gamma_{n}:=\operatorname{Gal}\left(F_{n} / F_{0}\right)$ and $n\left(\Gamma_{n}\right):=\sum_{g \in \Gamma_{n}} g$.

Remark

The ramified prime ∞ causes the $1-X$ for even characters.
The ramified prime \mathfrak{p} causes the extra factor for $\chi=\chi_{0}$.

Main (algebraic) theorem

Let $\mathcal{C} \ell^{0}(\mathcal{F}):=\lim _{\leftarrow_{n}^{-}} \mathcal{C} \ell^{0}\left(F_{n}\right)$ (limit on the norm maps).
Studying kernels and cokernels of the natural norm and inclusion maps between $\mathcal{C} \ell^{0}\left(F_{n}\right)$ and $\mathcal{C} \ell^{0}\left(F_{n-1}\right)$ (in particular norms are surjective and their kernels are gived by augmentation ideals), one verifies that the system of Fitting ideals is coherent with espect to norms.

Theorem (ABBL '15)

$$
\operatorname{Fitt}_{W[[\Gamma]]}\left(\mathcal{C} \ell^{0}(\mathcal{F})(\chi)\right)=\lim _{{ }_{n}}\left(\Theta_{n}^{\#}(1, \chi)\right):=\left(\Theta_{\infty}^{\#}(1, \chi)\right) \quad \text { for } \chi \neq \chi_{0}
$$

with

$$
\Theta_{n}^{\#}(1, \chi):= \begin{cases}\Theta_{n}(1, \chi) & \text { if } \chi \text { is odd } \\ \left.\frac{\Theta_{n}(X, \chi)}{1-X}\right|_{X=1} & \text { if } \chi \neq \chi_{0} \text { is even }\end{cases}
$$

Goss-Carlitz ζ-function

Let

- A_{+}(resp. $A_{+, n}$) denote the set of monic polynomials of A (resp. monic polynomials of degree n);
- $F_{\infty}=\mathbb{F}_{q}\left(\left(\theta^{-1}\right)\right)$ the completion of F at ∞ and $\overline{F_{\infty}}$ its algebraic closure;
- $\mathbb{C}_{\infty}:=\widehat{\overline{F_{\infty}}}$ the completion of $\overline{F_{\infty}}$ at the prime dividing ∞;
- $\mathbb{S}_{\infty}:=\mathbb{C}_{\infty}^{*} \times \mathbb{Z}_{p}$.

Definition (Goss-Carlitz ζ-function)

The Goss-Carlitz ζ-function is defined as

$$
\zeta_{A}(s):=\sum_{a \in A_{+}} a^{-s}=\sum_{n \geq 0}\left(\sum_{a \in A_{+, n}}\langle a\rangle_{\infty}^{-y}\right) x^{-n} \quad, s=(x, y) \in \mathbb{S}_{\infty}
$$

where

$$
a^{s}=x^{\operatorname{deg}(a)}\langle a\rangle_{\infty}^{y} \text { and }\langle a\rangle_{\infty}:=\frac{a}{\theta^{\operatorname{deg}(a)} \operatorname{sgn}(a)}=1+\text { pws of } \frac{1}{\theta} \in \mathbb{F}\left[\frac{1}{\theta}\right]
$$

and $\operatorname{sgn}(a)$ is the leading coefficient of a.

Stickelberger and $\zeta_{A}(s)$: interpolation

Let $\mathbb{S}_{\infty}^{+}:=\left\{(x, y) \in \mathbb{S}_{\infty}:|x|>1\right\}$ be our "half-plane" $\left(\sim \mathbb{C}^{+}=\{z \in \mathbb{C}: \operatorname{Re}(z)>1\}\right)$. Then

- since $a^{s}=x^{\operatorname{deg}(a)}\langle a\rangle_{\infty}^{y}$, one has $\left|a^{-s}\right|=|x|^{-\operatorname{deg}(a)}$ and $\zeta_{A}(s)$ converges on \mathbb{S}_{∞}^{+};
- an element $s=(x, y) \in \mathbb{S}_{\infty}$ defines a principal quasi-character

$$
\begin{gathered}
\varphi_{s}: \mathbb{I}_{F} / F^{*} \simeq \mathbb{Z} \times U_{1}(\infty) \times \prod_{v \neq \infty} A_{v}^{*} \longrightarrow \mathbb{C}_{\infty}^{*} \\
\left(n, \alpha_{1}, \prod \alpha_{v}\right) \xrightarrow{\varphi_{s}} x^{-n} \alpha_{1}^{y}
\end{gathered}
$$

- for any $y \in \mathbb{Z}_{p}$ consider the map

$$
\psi_{y}: \operatorname{Gal}\left(\mathcal{F}_{S} / F\right) \xrightarrow{\text { cls field }} U_{1}(\infty) \xrightarrow{(i d, y)} \mathbb{S}_{\infty} \xrightarrow{a \mapsto a^{s}} \mathbb{C}_{\infty}^{*} .
$$

For any $v \notin S$ one has $\psi_{y}\left(\operatorname{Fr}_{v}^{-1}\right)=\left\langle\pi_{v}\right\rangle_{\infty}^{y}$ (where π_{v} is the monic generator of the prime ideal v) and $\psi_{y}\left(\Theta_{S}\right)(x)$ converges for any $|x| \geqslant 1$.

Theorem (Stickelberger $\leftrightarrow \zeta_{A}$, ABBL '15)

For any $s=(x, y) \in \mathbb{S}_{\infty}^{+}$,

$$
\psi_{-y}\left(\Theta_{S}\right)\left(x^{-1}\right)=\left(1-\pi_{\mathfrak{p}}^{-s}\right) \zeta_{A}(s)
$$

Remarks

- The proof of the previous theorem uses the Euler product formula

$$
\zeta_{A}(s)=\prod_{v \neq \infty}\left(1-\pi_{v}^{-s}\right)^{-1}
$$

- By the properties of the Stickelberger element, the previous theorem can be used to ensure the convergence of ζ_{A} on the border of the disc $|x| \geqslant 1$.
- One can prove that

$$
v_{\infty}\left(\sum_{a \in A_{+, n}}\langle a\rangle_{\infty}^{y}\right) \geqslant p^{n-1}
$$

for any $y \in \mathbb{Z}_{p}$ and any $n \geqslant 1$, thus ensuring the convergence of ζ_{A} on the whole \mathbb{S}_{∞}.
The last remark is particularly relevant because we are interested in the values of ζ_{A} at negative integers, i.e.,

$$
\zeta_{A}(-j):=\zeta_{A}\left(\theta^{-j},-j\right) \quad j \in \mathbb{N}-\{0\}
$$

(note that $v_{\infty}\left(\theta^{-j}\right)=-j$ and $\left|\theta^{-j}\right|=|1 / \theta|^{j} \leqslant 1$).

Special values of $\zeta_{A}(s)$

For any $j \in \mathbb{Z}$ and $n \in \mathbb{N}$ let

$$
S_{n}(j):=\sum_{a \in A_{+, n}} a^{j} \in A \quad \text { and } \quad Z(X, j):=\sum_{n \geqslant 0} S_{n}(j) X^{n} \in A[X] .
$$

Then $\zeta_{A}(-j):=\zeta_{A}\left(\theta^{-j},-j\right)=Z(1, j)$ and it has trivial zeroes at even integers, i.e.,

$$
\zeta_{A}(-j)=Z(1, j)=0 \quad \text { for } j \geqslant 1, j \equiv 0 \quad(\bmod q-1) .
$$

Definition (Bernoulli-Goss numbers)

For any $j \in \mathbb{N}$, the Bernoulli-Goss numbers $\beta(j)$ are defined as

$$
\beta(j):=\left\{\begin{array}{cl}
Z(1, j) & \text { if } j=0 \text { or } j \not \equiv 0 \quad(\bmod q-1) \\
-\frac{d}{d X} Z(X, j)_{\mid X=1} & \text { if } j \geq 1 \text { and } j \equiv 0 \quad(\bmod q-1)
\end{array}\right.
$$

Lemma

For all $j \geq 0$, we have $\beta(j) \equiv 1\left(\bmod \theta^{q}-\theta\right)$. In particular $\beta(j) \neq 0$.

\mathfrak{p}-adic L-function

The characters of $\Delta=\operatorname{Gal}\left(F_{0} / F\right)$ are powers of the Teichmüller $\omega_{\mathfrak{p}}$ (values in $A_{\mathfrak{p}}$)

$$
a=\omega_{\mathfrak{p}}(a)\langle a\rangle_{\mathfrak{p}} \text { with } a \equiv \omega_{\mathfrak{p}}(a) \quad(\bmod \mathfrak{p}) \text { and }\langle a\rangle_{\mathfrak{p}} \in U_{1} .
$$

Let $\widetilde{\omega}_{\mathfrak{p}}$ be the composition of $\omega_{\mathfrak{p}}$ with the cyclotomic character (with values in W^{*}).

Definition (p-adic L-function)

For any $0 \leq i \leq q^{d}-2$ and any $y \in \mathbb{Z}_{p}$, the \mathfrak{p}-adic L-function is defined as

$$
L_{\mathfrak{p}}\left(X, y, \omega_{\mathfrak{p}}^{i}\right):=\sum_{n \geq 0}\left(\sum_{a \in A_{+, n}, \mathfrak{p} \nmid(a)} \omega_{\mathfrak{p}}^{i}(a)\langle a\rangle_{\mathfrak{p}}^{y}\right) X^{n} \in A_{\mathfrak{p}}[[X]] .
$$

Remarks

- By estimating the \mathfrak{p}-adic valuation of the coefficients of X^{n} one sees that it converges on $\mathbb{S}_{\mathfrak{p}}:=\mathbb{C}_{\mathfrak{p}}^{*} \times \mathbb{Z}_{p} \times \mathbb{Z} /\left(q^{d}-1\right)$ (which is the analogue of the previous $\left.\mathbb{S}_{\infty}\right)$.
- Another (almost unexplored) analogy: the space $\mathbb{S}_{\mathfrak{p}}$ can be interpreted as the set of principal quasi-characters on \mathbb{I}_{F} / F^{*} with values in $\mathbb{C}_{\mathfrak{p}}^{*}$.
$L_{\mathfrak{p}}$ and ζ_{A} : interpolation

Proposition $\left(L_{\mathfrak{p}} \leftrightarrow \zeta_{A}\right.$, ABBL '15)

Let $0 \leqslant i \leqslant q^{d}-2, j \equiv i\left(\bmod q^{d}-1\right), y \in \mathbb{Z}_{p}$ and $\mathfrak{p}=\left(\pi_{\mathfrak{p}}\right)$. Then
(1) $\quad L_{\mathfrak{p}}\left(X, j, \omega_{\mathfrak{p}}^{i}\right)=\left(1-\pi_{\mathfrak{p}}^{j} X^{d}\right) Z(X, j) \in A[X] \quad$ and $\quad L_{\mathfrak{p}}\left(X, y, \omega_{\mathfrak{p}}^{i}\right) \equiv Z(X, i) \quad(\bmod \mathfrak{p})$.
(2o) $\quad L_{\mathfrak{p}}\left(1, j, \omega_{\mathfrak{p}}^{i}\right)=\left(1-\pi_{\mathfrak{p}}^{j}\right) \beta(j), i \not \equiv 0 \quad(\bmod q-1)$
(2e) $\quad \frac{d}{d X} L_{\mathfrak{p}}\left(X, j, \omega_{\mathfrak{p}}^{i}\right)_{\mid X=1}=-\left(1-\pi_{\mathfrak{p}}^{j}\right) \beta(j), j \geq 1, i \equiv 0 \quad(\bmod q-1)$.
The proof is easier if one consider the Euler product formula of the two functions. The one for $L_{\mathfrak{p}}$ is

$$
L_{\mathfrak{p}}\left(X, y, \omega_{\mathfrak{p}}^{i}\right)=\prod_{v \notin S}\left(1-\omega_{\mathfrak{p}}^{i}\left(\pi_{v}\right)\left\langle\pi_{v}\right\rangle_{\mathfrak{p}}^{y} X^{\operatorname{deg}(v)}\right)^{-1}
$$

Stickelberger and $L_{\mathfrak{p}}$: Iwasawa Main Conjecture

For any $s=(1, y, i) \in \mathbb{S}_{\mathfrak{p}}$, consider the map

$$
\xi_{s}: \operatorname{Gal}\left(\mathcal{F}_{S} / F\right) \xrightarrow{r e s} \operatorname{Gal}(\mathcal{F} / F) \xrightarrow{\kappa} A_{\mathfrak{p}}^{*} \hookrightarrow \mathbb{S}_{\mathfrak{p}} \xrightarrow{a \mapsto a^{s}} \mathbb{C}_{\mathfrak{p}}^{*} .
$$

Theorem (Stickelberger $\leftrightarrow L_{\mathfrak{p}}$, ABBL '15)

For any $s=(1, y, i) \in \mathbb{S}_{\mathfrak{p}}$ one has

$$
\xi_{-s}\left(\Theta_{S}\right)(X)=L_{\mathfrak{p}}\left(X, y, \omega_{\mathfrak{p}}^{i}\right) .
$$

Note that the left hand side lives in characteristic 0 and the right hand side in characteristic p. This is more evident in the following equivalent statement.

Theorem (Stickelberger $\leftrightarrow L_{p}$, Sinnott '08 + ABBL '15)

Let $0 \leq i \leq q^{d}-2$; for any $y \in \mathbb{Z}_{p}$, the homomorphism $\gamma \mapsto \kappa(\gamma)^{y}$ induces a map $s_{X}:(W[[\Gamma]] / p)[[X]] \rightarrow C^{0}\left(\mathbb{Z}_{p}, A_{\mathfrak{p}}\right)$ such that

$$
s_{X}\left(\Theta_{\infty}\left(X, \widetilde{\omega}_{\mathfrak{p}}^{-i}\right)\right)(y)=L_{\mathfrak{p}}\left(X,-y, \omega_{\mathfrak{p}}^{i}\right) .
$$

Remark

Specializing at $X=1$ the left hand side provides the Fitting ideal of the Iwasawa module $\mathcal{C} \ell^{0}(\mathcal{F})$, the right hand side interpolates (via $\left.Z(X, i)\right)$ the values of Goss ζ-function.

Ferrero-Washington theorem

Theorem ($\mu=0$, ABBL '15)

For any $1 \leq i \leq q^{d}-2\left(\right.$ i.e. $\left.\omega_{\mathfrak{p}}^{i} \neq \chi_{0}\right)$, one has $\Theta_{\infty}^{\#}\left(1, \widetilde{\omega}_{\mathfrak{p}}^{i}\right) \not \equiv 0(\bmod p)$.

Proof.

- $\beta(j) \neq 0$ and interpolation property (2);
- $L_{\mathfrak{p}}\left(1, j, \omega_{\mathfrak{p}}^{i}\right) \neq 0$ for $j \not \equiv 0(\bmod q-1)$;
- $\frac{d}{d X} L_{\mathfrak{p}}\left(X, j, \omega_{\mathfrak{p}}^{i}\right)_{\mid X=1} \neq 0$ for $j \geq 1, j \equiv 0(\bmod q-1)$;
- $s_{X}\left(\Theta_{\infty}^{\#}\left(1, \widetilde{\omega}_{\mathfrak{p}}^{i}\right)\right)(-j) \neq 0$ and s injective on $W[[\Gamma]] / p W[[\Gamma]]$.

Since $\Theta_{\infty}^{\#}\left(1, \widetilde{\omega}_{\mathfrak{p}}^{i}\right)$ is the limit of the $\Theta_{n}^{\#}\left(1, \widetilde{\omega}_{\mathfrak{p}}^{i}\right)$ we can define

$$
N_{\mathfrak{p}}(i):=\operatorname{Inf}\left\{n \geqslant 0: \Theta_{n}^{\#}\left(1, \widetilde{\omega}_{\mathfrak{p}}^{i}\right) \neq 0 \quad(\bmod p)\right\}
$$

Bernoulli-Goss numbers

Theorem (Arithmetic properties of B-G numbers, ABBL '15)

Let $1 \leq i \leq q^{d}-2$, then

$$
N_{\mathfrak{p}}(i) \leqslant \operatorname{Inf}\left\{v_{\mathfrak{p}}(\beta(j)): j \equiv-i \quad\left(\bmod q^{d}-1\right)\right\}
$$

Proof.

- Let $1 \leq i \leq q^{d}-2$ and put

$$
m_{\mathfrak{p}}(i):=\left\{\begin{array}{cll}
\operatorname{Inf}\left\{v_{\mathfrak{p}}\left(L_{\mathfrak{p}}\left(1, y, \omega_{\mathfrak{p}}^{i}\right)\right): y \in \mathbb{Z}_{p}\right\} & \text { for } i \not \equiv 0 & (\bmod q-1) \\
\operatorname{Inf}\left\{v_{\mathfrak{p}}\left(\frac{d}{d X} L_{\mathfrak{p}}\left(X, y, \omega_{\mathfrak{p}}^{i}\right)_{\mid X=1}\right): y \in \mathbb{Z}_{p}\right\} & \text { for } i \equiv 0 & (\bmod q-1)
\end{array}\right.
$$

- Interpolation property $(2) \Longrightarrow m_{\mathfrak{p}}(i)=\operatorname{Inf}\left\{v_{\mathfrak{p}}(\beta(j)): j \geq 1, j \equiv i\left(\bmod q^{d}-1\right)\right\}$.
- Using the link with MC

$$
N_{\mathfrak{p}}(i) \leqslant m_{\mathfrak{p}}(-i)=\operatorname{Inf}\left\{v_{\mathfrak{p}}(\beta(j)): j \equiv-i \quad\left(\bmod q^{d}-1\right)\right\} .
$$

Bibliography

- Anglés - B. - Bars - Longhi, Iwasawa Main Conjecture for the Carlitz cyclotomic extension and applications, arXiv:1412.5957 [math.NT] (2015).
- B. - Bars - Longhi, Aspects of Iwasawa theory over function fields, arXiv:1005.2289 [math.NT] (2010), to appear in the EMS Congress Reports.
- B. - Bars - Longhi, Characteristic ideals and Iwasawa theory, New York J. Math. 20 (2014), 759-778.
- Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik 35, Springer-Verlag, Berlin, 1996.
- Greither - Popescu, The Galois module structure of ℓ-adic realizations of Picard 1-motives and applications, Int. Math. Res. Not. (2012), no. 5, 986-1036.
- Greither - Popescu, Fitting ideals of ℓ-adic realizations of Picard 1-motives and class groups of global function fields, J. Reine Angew. Math. 675 (2013), 223-247.
- Sinnott, Dirichelet series in function fields, J. Number Theory 128 (2008), 1893-1899.

