Genus 3 curves and explicit realisations of $\mathrm{GSp}_6(\mathbb{F}_\ell)$ as a Galois group over \mathbb{Q}

Sara Arias-de-Reyna*

Abstract: Let n be a natural number and ℓ a prime number. Given a genus n curve C defined over \mathbb{Q} , the group of $\overline{\mathbb{Q}}$ -defined ℓ -torsion points of its Jacobian variety J_C is endowed with an action of the absolute Galois group $G_{\mathbb{Q}}$, giving rise to a Galois representation $\rho_{J_C,\ell} : G_{\mathbb{Q}} \to \operatorname{GSp}_{2n}(\mathbb{F}_{\ell})$. When $\rho_{J_C,\ell}$ is surjective, it provides us with a realisation of $\operatorname{GSp}_{2n}(\mathbb{F}_{\ell})$ as a Galois group over \mathbb{Q} . To study Galois realisations (over \mathbb{Q}) with particular ramification properties at ℓ , it is of great interest to have conditions at auxiliary primes different from ℓ that ensure surjectivity, while allowing great flexibility in the behaviour at the prime ℓ .

In this talk we focus on the case n = 3, and provide an explicit construction of curves C defined over \mathbb{Q} such that $\rho_{J_C,\ell}$ is surjective for a prefixed prime ℓ .

This is joint work with Cécile Armana, Valentijn Karemaker, Marusia Rebolledo, Lara Thomas and Núria Vila, and was initiated as a working group in the Conference *Women in Numbers Europe* (CIRM, 2013).

^{*}University of Luxembourg